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Exploration and exploitation
At gambling, the deadly sin is to mistake bad play for bad luck. —Ian Fleming

In many settings, we have to make decisions with limited information

I This is common in finance, where estimation and model error is significant, but
we have to act nevertheless

I In some cases, our actions will determine how our learning changes over time.

I If we care about making good decisions, both now and in the future, how should
we choose what to do?
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Multi-armed Bandits
At gambling, the deadly sin is to mistake bad play for bad luck. —Ian Fleming

A classical example of this is a multi-armed bandit.

I One has M machines which you can play, but you do not know the distribution of
their costs.

I When you play, you face a (random) cost, but will also learn about this
distribution, which allows you to make better future decisions.

I You need to decide how to trade-off between exploring, that is, playing machines
for the purposes of learning about costs, and exploiting, that is, playing to achieve
a small cost.

These are used as toy models of many different problems: drug trials, trading
strategies, optimal scheduling, experimental design...
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Multi-armed bandits
A gambler never makes the same mistake twice. It’s usually three or more times. —-Terrence Murphy

The analysis of these systems has a long history.

I The problem was first formulated during WWII, and according to Peter Whittle
“efforts to solve it so sapped the energies and minds of Allied analysts that the
suggestion was made that the problem be dropped over Germany, as the ultimate
instrument of intellectual sabotage.”

I A great advance was made by Gittins (Gittins & Jones, 1974),
I Suppose the payoffs depend on an observed Markov process (for example, the

Bayesian estimates) and are independent
I He constructed a ‘dynamic allocation index’ (the Gittins’ index) which is a

predictable process such that the minimal-expected-cost strategy is to play the
machine with the smallest index.
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Gittins’ index
A gambler never makes the same mistake twice. It’s usually three or more times. —-Terrence Murphy

Let’s try and make Gittins’ result precise

I We have costs h(ρt)(ω, t)
I These can depend on observed ‘state’ variables.
I ρt indicates which machine to play at time t.

I (Weber) If γ
(m)
t is the Ft-measurable value such that

0 = sup
τ

E
[ ∑
t<s≤τ

βs(h(m)(ω, s)− γ(m)
t )

∣∣∣Ft

]
for τ > 0 stopping times.

I The strategy ρt = arg minm{γ
(m)
t } minimizes

E
[ ∑
t<s≤τ

βsh(ρs)(ω, s)
∣∣∣Ft

]
.
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Gittins’ index
A gambler never makes the same mistake twice. It’s usually three or more times. —-Terrence Murphy

Other approaches exist

I Mandelbaum proposes an allocation strategy approach

I Whittle uses a dynamic programming argument based on a ‘retirement option’

I Numerous extensions, variations, ...

I Extended to continuous time by El Karoui and Karatzas, Bank and Föllmer, Bank
and Küchler,...

Effectively all treat only the expected cost criterion or a (linear) regret criterion.
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Gittins’ index
A gambler never makes the same mistake twice. It’s usually three or more times. —- Terrence Murphy

I Kelly (see also Bather, Chang and Lai, Yao...) noticed that if β → 1, in a simple
case, the rule degenerates towards the following rule: “Choose the bandit where
you’ve seen the least number of losses.”

I Equivalently, take a confidence bound on the expected return of each bandit, and
play the bandit with the lowest confidence bound

I In the CS community, Agrawal (and others) proposed the ‘UCB’ algorithm, by
tweaking the width of the confidence intervals, and proved asymptotic
performance bounds.

This leads to a peculiar conclusion:

You should prefer to play uncertain machines.
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Uncertainty modelling
Wisdum don’t konsist in knowing more that iz new, but in knowing less that iz false. —Josh Billings

I Model uncertainty, where you don’t assume you know the distribution of
outcomes, has been of much interest in the mathematical finance community.
I Classic works include Knight (1921), Keynes (1921) and Wald (1950)
I Much recent work uses sets of probability measures or nonlinear expectations/risk

measures to describe uncertainty

I Paradoxes such as the Ellsberg paradox suggest that we are generally biased
against uncertainty
I This is easily checked by introspection

I Connections with statistical estimation are possible
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A toy problem
Wisdum don’t konsist in knowing more that iz new, but in knowing less that iz false. – Josh Billings

Example

I Suppose we are going to bet on the toss of a (possibly unfair) coin.

I Heads you get £1, tails you get nothing.

I You must choose between two possible coins.

I We will throw each coin i exactly Ni times before you choose.

I Given your observations, which coin do you choose?
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A toy problem
Wisdum don’t konsist in knowing more that iz new, but in knowing less that iz false. —Josh Billings

Example (Frequentist solution (?))

I The first we throw N1 = 3 times, and observe 2 heads

I The second we throw N2 = 3000 times, and observe 2000 heads.

I Which coin do you prefer?

I Everyone prefers the second. Most people still prefer the second if we only observe
1999 heads.

I This is inconsistent with the basic rule: maximize the estimated expectation
Ê [u(X i )] = p̂iu(1).
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A toy problem
Wisdum don’t konsist in knowing more that iz new, but in knowing less that iz false. – Josh Billings

Example (Bayesian solution (?))

I For any prior distribution on p, we can compute

E [u(X i )|obs] = E
[
E [u(X i )|pi , obs]

∣∣obs
]

= E [pi |obs]u(1)

I The variance of p doesn’t appear in the Bayesian value

I The utility/loss function u adds nothing

I The prior has effect O(1/N), while estimation error is O(1/
√
N).
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Risk aversion and nonlinear expectations
A mathematician, like a sculptor, should be careful never to fall in love with the model —C.E.M. Pearce

Given a space (Ω,F ,P), a coherent (nonlinear) expectation is a map E : L∞(F)→ R
such that

I Monotonicity: If ξ ≥ ξ′ P-a.s. then E(ξ) ≥ E(ξ′)

I Constant triviality and equivariance: For any k ∈ R, ξ ∈ L∞, E(k) = k and
E(ξ + k) = E(ξ) + k

I Positive homogeneity: for λ > 0, E(λξ) = λE(ξ)

I Subadditivity: E(ξ + ξ′) ≤ E(ξ) + E(ξ′)

I Lebesgue property: If ξn → ξ then E(ξn)→ E(ξ).

The measure P acts as a ‘reference’ measure, and we assume strict monotonicity P-a.s.
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Duality
A mathematician, like a sculptor, should be careful never to fall in love with the model —C.E.M. Pearce

We can describe a coherent expectation through its dual (see Artzner et al.):

I Under our assumptions E has the representation

E(ξ) = sup
Q∈Q

{
EQ [ξ]

}
An example of a family of measures Q (over a single step) is given by confidence
intervals, or balls around an estimate in Wasserstein distance.

I Note that if ξ represents losses, our preference is for less uncertain options.

I What happens when we put this theory into practice for a multi-armed bandit?

Uncertain Bandits: Uncertainty and expectations 15



Time consistency
When the facts change, I change my mind. What do you do sir? —Keynes (attr.)

A key problem when working with nonlinear expectations is time consistency.

I Suppose our information is modelled by a filtration {Ft}.
I If expectations can be obtained through Backward induction/BSDEs, then they

have recursivity: we can define E(·|Ft) such that

E(·|Ft) = E
(
E(·|Fs)

∣∣Ft

)
for all t < s.

I Coherent expectations are recursive for all filtrations iff they are linear (or the
trivial worst-case expectation).

I Given recursivity, decisions made to maximize/minimize the expectation will
satisfy a dynamic programming principle.
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Time consistency
When the facts change, I change my mind. What do you do sir? —Keynes (attr.)

I In the multi-armed bandit problem, our controls determine the filtration.

I This means we cannot presume consistency in our expectation.
I The earlier optimality condition is then too strong to obtain results.

I One could use backward induction over all possible observation sets to ensure
consistency, but then you do not have a simple optimality criterion, and there is no
hope of a ‘nice’ solution to the problem.

I Using an indifference valuation perspective can be helpful

Uncertain Bandits: Time consistency 17



Our information structures
When the facts change, I change my mind. What do you do sir? —Keynes (attr.)

I We have M bandits, each with a filtered space (Ω(m),F (m)) and dominating
measure P(m). Assume we eventually play machine m exactly T (m) times.

I Define the orthant space by Ω̄ =
⊗

m Ω(m), similarly P̄, and

F̄(s) =
⊗
m

F (m)(s(m))

where s = (s(1), s(2), ..., s(m)).

I F̄(s) is a filtration in the sense that if s ≤ s ′ componentwise then F̄(s) ⊆ F̄(s ′)

I A policy ρ induces a map t → s by counting the number of plays, so we can write
Fρt = F̄s[ρ,t] for the ‘observed’ filtration.
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Proving optimality
There is nothing in this world constant but inconstancy —Jonathan Swift

I We are now ready to show that there exists an index process which gives an
optimal strategy, in some sense.

I The proof depends heavily on the independence of the bandit processes
I We assume our expectation is recursive on an individual Bandit
I The bandits have a strong form of independence in their (uncertain) distributions

I Given this structure, we separate into two key steps: analysing a single Bandit and
combining multiple Bandits together
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The structure of uncertainty
There is nothing in this world constant but inconstancy —Jonathan Swift

I For each m, we have a family of measures Q(m), with Q� P(m) for all Q ∈ Q(m).

I The set Q(m) describes our (evolving) uncertain family of models for the mth
bandit.

I We do not require stationarity or ergodicity assumptions, and Bayesian updating
can be built into each model.

I Define Q̄ = {Q =
⊗

m Q(m) for Q(m) ∈ Q(m)}.
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The structure of uncertainty
There is nothing in this world constant but inconstancy —Jonathan Swift

I For each m, we assume Q(m) satisfies a pasting property:
If Q,Q′ ∈ Q(m) then for any s,

Q̂(A) := EQ
[
EQ′ [IA|F

(m)
s ]

]
gives a measure in Q(m)

I Equivalently, the nonlinear expectation

E(m)(ξ|F (m)
s ) = sup

Q∈Q(m)

EQ[ξ|F (m)
s ]

is recursive.

I In examples, we will force this by constructing E(m) by backward induction
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The structure of uncertainty
There is nothing in this world constant but inconstancy —Jonathan Swift

Theorem
Let Es(ξ) := supQ∈Q̄ EQ[ξ|F̄(s)]. Then E satisfies

I Subconsistency: Es(ξ) ≤ Es(Es′(ξ)) for s ≤ s ′

I Independence: For nonnegative single-machine random variables
X (m) : Ω(m) → R+

Es

(∏
m

X (m)(ωm)
)

=
∏
m

E(m)
(
X (m)(ωm)

∣∣F (m)

s(m)

)
.

We can also extend Es to ‘stopping times’ T, where S ∈ T if S = (S (1), S (2), ...,S (M))

and S (m) is an (F (m)
s )s≥0-stopping time for each m.

Uncertain Bandits: Gittins’ optimal strategies 22



‘Gittins’ optimality’
[A cynic is] a man who knows the price of everything, and the value of nothing —Wilde

Definition
We say a C ρ is a compensator of a discounted cost process gρ if

E
(∑

n

(gρn − C ρn )
)

= 0

and C ρn is Fρn−1-measurable.

We say ρ∗ is a Gittins’ optimum if there exists a compensator family {C ρ} such that,
for all N,

E
(
IA
∑
n>N

(gρ
∗

n − C ρ
∗

n )
)
≤ 0 for all A ∈ Fρ

∗

N

and, for all N ≥ 1, all ρ,
∑N

n=1 C
ρ∗
n ≤

∑N
n=1 C

ρ
n a.s.
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‘Gittins’ optimality’
[A cynic is] a man who knows the price of everything, and the value of nothing —Wilde

I In a classical setting, writing C ρn = E [V ρ
n+1|Fn]− V ρ

n gives such a family C ρ, by
the martingale optimality principle.

I Generally C ρ is not unique but one can derive a backward induction algorithm to
compute a possible C ρ

I The key idea is that you account for future (random) compensation when computing
the minimal compensation required today

I Our definition gives a Strotz–Pollack (intertemporal game) style time-consistency, at
least in the optimal strategy

I With a recursive expectation, (classical) optimality implies Gittins’ optimality, and
conversely for some predictable endowment.
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The main theorem
There is no more miserable human being than one in whom nothing is habitual but indecision. —W. James

For each machine m, we have an (F (m)
t )t≥0-adapted sequence of random costs h(m).

Assume (for simplicity) these generate (F (m)
t )t≥0.

Definition
For each m, define the robust Gittins’ index γ

(m)
t to be the smallest F (m)

t -measurable
value γ such that

ess inf
τ∈T (m)

E(m)
( τ∑

s=1

βs(h
(m)
s+t − γ)

∣∣∣F (m)
t

)
≤ 0

where T (m) = {(F (m)
s+t )s≥0-positive stopping times} .
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The main theorem
There is no more miserable human being than one in whom nothing is habitual but indecision. —W. James

Theorem
Define

ρ∗t = arg min
m

γ
(m)

s(m)(t)

where s(m)(t) indicates the number of plays of bandit m by time t.

Then ρ∗ is a dynamic Gittins’ optimum for the discounted cost gρt = βth
(ρt)

s(m)(t)
.

NB. As γ(m) only changes when machine m is played, this is a consistent strategy: at
time t we plan to play until γ(m) is no longer minimal, and this is our eventual strategy.
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The main theorem
There is no more miserable human being than one in whom nothing is habitual but indecision. —W. James

I The purpose of this theorem is that we can compute γ
(m)
s by solving one inverse

problem based on optimal stopping, rather than an m-dimensional problem

I The result does not make any assumptions on the costs, information flows or
stationarity of any bandit (apart from independence, and they only can change
when you play them).

I Robust optimal stopping, with recursive nonlinear expectations, has been well
studied, and each problem is of this type.

I If our machines are Markovian, then we can solve this via a pde/difference
equation method. If all machines are symmetric, then only one problem needs to
be solved.

I We can identify qualitative phenomena from this solution.
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Consequences
But to us, probability is the very guide of life. —Joseph Butler

I Now that we have our optimality result, we can start analysing our problem
numerically

I We will consider a simple setting, where our machines return simple Bernoulli
costs of 0 or 1, with a constant but unknown probability.

I We can solve the robust optimal stopping problem, for any proposed γ, using
backward recursion.

I We use a horizon of T (m) = 10000 and have a discount rate β ≈ 1.
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Consequences
But to us, probability is the very guide of life. —Joseph Butler

I At each time, we have an estimated probability p = P(h = 1) ≈ p̂t which evolves
like a Bayesian estimate, with implied initial sample size T0 = 1.

I We infer credible intervals Θt using the conjugate Beta prior, with a fixed
credibility level k

I We define our nonlinear expectation by

E(m)
t (ξ) = sup

p∈Θt

Ep[ξ|F (m)
t ]

for F (m)
t+1-mle ξ, and then extend by backward recursion.

I A similar framework is in Bielecki, Cialenco & Chen.
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Low uncertainty aversion
Exploring the unknown requires tolerating uncertainty. —Brian Greene
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High uncertainty aversion
Exploring the unknown requires tolerating uncertainty. —Brian Greene
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Strong discounting
Exploring the unknown requires tolerating uncertainty. —Brian Greene
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Short horizon
Exploring the unknown requires tolerating uncertainty. —Brian Greene
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A ‘balanced’ setup
The real problem is not whether machines think but whether men do. —B.F. Skinner
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Performance
An optimist is a guy that has never had much experience. —Don Marquis

I We can also simulate behaviour for a particular setup.
I Consider M = 50 machines, with varying (true) probabilities of a cost.

I For each trial, we simulate a, b from Γ(1, 1/100), then each bandit’s probability from
Beta(a, b).

I We can compute performance of various expectations of this type, both in terms
of regret (average performance vs. perfect play), and in terms of how often the
better arm is chosen.
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Behaviour over T = 10000 steps
An optimist is a guy that has never had much experience. —Don Marquis
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Conclusions
An optimist is a guy that has never had much experience. —Don Marquis

I Further work on the numerical side is needed
I A continuous version and asymptotics may be interesting
I More delicate uncertainty frameworks may be important for performance

I Understanding the connection between learning, uncertainty and probability
distortions is of interest

I Novel optimality criteria can address dynamic inconsistency in useful ways

I Ultimately, gaining any insight into the not-independent bandits case would be
very interesting in practice
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