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Aim of the paper

Aim of the paper

Investors trading in a discrete-time, multi-period and multiple-prior
financial market.
New characterisation of the condition of quasi-sure no-arbitrage of
[Bouchard and Nutz, 2015] which has become a standard assumption.

Better economical understanding of this assumption.

Give the equivalence with several alternative notions of no-arbitrage
previously used for utility maximisation.

Simple proof for FTAP.

New possibility for utility maximisation.

Revisit the so-called geometric and quantitative no-arbitrage
conditions.

Explicit two important examples where all these concepts are
illustrated.
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Framework and notations

Framework and notations

Set of priors (similar to [Bouchard and Nutz, 2015])

Sequence (Ωt)1≤t≤T of Polish spaces. We denote

ωt = (ω1, . . . , ωt) ∈ Ωt := Ω1 × · · · × Ωt.

Assumption 1 : the one period set of priors Qt+1 : ωt ∈ Ωt � P(Ωt+1)
is a non-empty and convex valued random set s.t.

Graph(Qt+1) =
{

(ωt, P ) ∈ Ωt ×P(Ωt+1), P ∈ Qt+1(ωt)
}

is an analytic set (continuous image of a Polish space).

Jankov-von Neumann Theorem allows to construct the set of all possible
priors QT .

QT := {Q1 ⊗ q2 ⊗ · · · ⊗ qT , Q1 ∈ Q1, qs+1 ∈ SKs+1,

qs+1(·, ωs) ∈ Qs+1(ω
s) ∀ωs ∀ 1 ≤ s ≤ T − 1 },

where SKt+1 is the set of Bc(Ωt) :=
⋂
P∈P(Ωt) BP (Ωt)-meas. stochastic

kernel on Ωt+1 given Ωt.
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Framework and notations

The traded assets and strategies

Traded assets : S := {St, 0 ≤ t ≤ T}, d-dimensional process.

Assumption 2 : S is Borel-adapted.

Trading strategies : φ := {φt, 1 ≤ t ≤ T} ∈ Φ, universally-predictable
d-dimensional process.

Trading is self-financing. Riskless asset’s price is constant 1.

V x,φt = x+

t∑
s=1

φs∆Ss.
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Global NA

No-arbitrage conditions

Monoprior NA(P)

NA(P ) : V 0,φ
T ≥ 0 P -a.s. for some φ ∈ Φ ⇒ V 0,φ

T = 0 P -a.s.

Robust NA

NA(QT ) : V 0,φ
T ≥ 0 QT -q.s. for some φ ∈ Φ⇒ V 0,φ

T = 0 QT -q.s.

See Bouchard and Nutz [2015]

N ⊂ ΩT is called a QT -polar set if ∀P ∈ QT , ∃AP ∈ B(X) such that
P (AP ) = 0 and N ⊂ AP . Holds true QT -q.s. : outside a QT -polar set.
QT -full measure set : complement of a QT -polar set.
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Global NA

No-arbitrage conditions

Monoprior NA(P)

NA(P ) : V 0,φ
T ≥ 0 P -a.s. for some φ ∈ Φ ⇒ V 0,φ

T = 0 P -a.s.

Robust NA

NA(QT ) : V 0,φ
T ≥ 0 QT -q.s. for some φ ∈ Φ⇒ V 0,φ

T = 0 QT -q.s.

See Bouchard and Nutz [2015]

N ⊂ ΩT is called a QT -polar set if ∀P ∈ QT , ∃AP ∈ B(X) such that
P (AP ) = 0 and N ⊂ AP . Holds true QT -q.s. : outside a QT -polar set.
QT -full measure set : complement of a QT -polar set.



Aim The model No Arbitrage Examples Conclusion Références

Global NA

No-arbitrage conditions

Is NA(QT ) the“right” condition ?

Under this condition it is not even clear if there exists a model
P ∈ QT satisfying NA(P ). We will prove that this is in fact
possible.

Nevertheless, QT might still contain some models that are not
arbitrage free.

An agent may not be able to delta-hedge a simple vanilla option
using different levels of volatility in a arbitrage free way.
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Global NA

No-arbitrage conditions

Instead of NA(QT ) one may assume that every model is arbitrage free.

Strong NA

sNA(QT ) : NA(P ), ∀P ∈ QT .

sNA(QT ) is useful to obtain tractable theorems for expected utility
maximisation for unbounded function, see [Blanchard and Carassus,
2018] and [Rásonyi and Meireles-Rodrigues, 2018].

This definition seems also relevant in a continuous time setting for
studying the no-arbitrage characterisation, see [Biagini et al., 2015].
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Global NA

No-arbitrage characterisations

Weak NA

wNA(QT ) : ∃P ∈ QT s.t. NA(P ).

The contraposition of the wNA(QT ) condition is that for all models

P ∈ QT , there exists a strategy φP such that V 0,φP

T ≥ 0 P -a.s. and

P (V 0,φP

T > 0) > 0.
A concrete example of a such model-dependent arbitrage is given in
[Davis and Hobson, 2007].
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Global NA
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Figure – Simple relations between the no-arbitrage definitions.
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Global NA

Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

NA(QT ) holds true.

There exists some PT ⊂ QT s.t.

1 PT and QT have the same polar-sets
2 sNA(PT ) holds true i.e. NA(P) for all P ∈ PT .

Let P ∗ as in Theorem 11 below with the fix disintegration
P ∗ := P ∗1 ⊗ p∗2 ⊗ · · · ⊗ p∗T . The set PT is defined recursively as follows :

P1 :=
{
λP ∗1 + (1− λ)P, 0 < λ ≤ 1, P ∈ Q1

}
,

Pt+1 :=
{
Pt ⊗

(
λp∗t+1 + (1− λ)qt+1

)
, 0 < λ ≤ 1,

Pt ∈ Pt, qt+1(·, ωt) ∈ Qt+1(ωt) ∀ωt ∈ Ωt
}
.
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Applications

Applications

Equivalence between the NA(QT ) condition and the no-arbitrage
condition introduced by [Bartl et al., 2019] which studies the problem of
robust maximisation of expected utility using medial limits.

Corollary

Assume that Assumptions 1. and 2. hold true. The following conditions
are equivalent

The NA(QT ) condition holds true.

For all Q ∈ QT , there exists some P ∈ PT such that Q� P and
such that NA(P ) holds true.

For all Q ∈ QT , there exists some P ∈ QT such that Q� P and
such that NA(P ) holds true.
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Applications

Applications

Robust FTAP of [Bouchard and Nutz, 2015].

RT := {P ∈ P(ΩT ), ∃Q
′
∈ QT , P � Q

′
and P is a martingale measure}.

KT := {P ∈ P(ΩT ), ∃Q
′
∈ PT , P ∼ Q

′
and P is a martingale measure}.

Corollary

Assume that Assumptions 1. and 2. hold true. The following conditions
are equivalent

The NA(QT ) condition holds true.

For all Q ∈ QT , there exists some P ∈ KT such that Q� P.

For all Q ∈ QT , there exists some P ∈ RT such that Q� P.
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Applications

Applications

Random Utility

U : ΩT × R→ R ∪ {−∞} such that

for every x ∈ R, U (·, x) : ΩT → R ∪ {±∞} is B(ΩT )-measurable,

for all ωT ∈ ΩT , U
(
ωT , ·

)
: R→ R ∪ {±∞} is non-decreasing and

concave on (0,∞)

U(·, x) = −∞, for all x < 0.

Robust portfolio problem with initial wealth x

u(x) := sup
φ∈Φ(x,U,QT )

inf
P∈QT

EPU(·, V x,φT (·)). (1)

where Φ(x, U,QT ) is the set of all strategies, s.t V x,φT (·) ≥ 0 QT -q.s. and

EPU
+(·, V x,φT (·)) <∞ or EPU

−(·, V x,φT (·)) <∞ for all P ∈ QT .
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Applications

Applications

Assumption 3 : We have that U+(·, 1), U−(·, 1
4 ) ∈ WT and

∆St, 1/α
P
t ∈ Wt for all 1 ≤ t ≤ T and P ∈ Pt, where

Wt :=
⋂
r>0

{
X : Ωt → R ∪ {±∞}, B(Ωt)-measurable, sup

P∈Qt

EP |X|r <∞
}
.

Corollary

Assume that the NA(QT ) condition and Assumptions 1. and 2. hold
true. Furthermore, assume that U is either bounded from above or that
Assumption 3. holds true. Then for all x ≥ 0.

u(x) = uP(x) := sup
φ∈Φ(x,U,PT )

inf
P∈PT

EPU(·, V x,φT (·)).
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Quantitative and geometric characterisation

Local NA

First part of [Bouchard and Nutz, 2015, Theorem 4.5]

Theorem

Assume that Assumptions 1 and 2 hold true. Then the following
statements are equivalent :
1. The NA(QT ) condition holds true.
2. For all 0 ≤ t ≤ T − 1, there exists a Qt-full measure set
ΩtNA ∈ Bc(Ωt) such that for all ωt ∈ ΩtNA,

h∆St+1(ωt, ·) ≥ 0 Qt+1(ωt)-q.s.⇒ h∆St+1(ωt, ·) = 0 Qt+1(ωt)-q.s.
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Quantitative and geometric NA

Measurability of the supports

Lemma

Let P ∈ QT with a fixed disintegration P := Q1 ⊗ q2 ⊗ · · · ⊗ qT . Under
Assumptions 1 and 2, the following supports of the conditional
distribution of ∆St+1(ωt, ·)

D
t+1

(ω
t
) :=

⋂{
A ⊂ Rd

, closed, Pt+1

(
∆St+1(ω

t
, .) ∈ A

)
= 1, ∀Pt+1 ∈ Qt+1(ω

t
)
}

D
t+1
P (ω

t
) :=

⋂{
A ⊂ Rd

, closed, qt+1

(
∆St+1(ω

t
, .) ∈ A,ωt

)
= 1
}
,

are non-empty, closed valued random set with graphs in Bc(Ωt)⊗B(Rd).



Aim The model No Arbitrage Examples Conclusion Références

Quantitative and geometric NA

Geometric NA

Geometric view in the spirit of [Jacod and Shiryaev, 1998, Theorem 3g)].
Recall that Ri(C) = {y ∈ C, ∃ ε > 0, Aff(C) ∩B(y, ε) ⊂ C}.

Definition

The geometric no-arbitrage condition holds true if for all 0 ≤ t ≤ T − 1,
there exists some Qt-full measure set ΩtgNA ∈ Bc(Ωt) such that for all

ωt ∈ ΩtgNA, 0 ∈ Ri
(
Conv(Dt+1)

)
(ωt).

In this case for all ωt ∈ ΩtgNA, there exists εt(ω
t) > 0 such that

B(0, εt(ω
t)) ∩ Aff

(
Dt+1

)
(ωt) ⊂ Conv

(
Dt+1

)
(ωt).

The geometric (local) no-arbitrage condition is indeed practical : it
allows to check whether the (global) NA(QT ) condition holds true
or not.

As Qt+1 and ∆St+1 are given one gets Ri
(
Conv(Dt+1)

)
(·) and it is

easy to check whether 0 is in it or not.
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Quantitative and geometric NA

Quantitative NA

Quantitative view the spirit of [Rásonyi and Stettner, 2005, Proposition
3.3]

Definition

The quantitative no-arbitrage condition holds true if for all
0 ≤ t ≤ T − 1, there exists some Qt-full measure set ΩtqNA ∈ Bc(Ωt)
such that for all ωt ∈ ΩtqNA, there exists βt(ω

t), κt(ω
t) ∈ (0, 1] such that

for all h ∈ Aff
(
Dt+1

)
(ωt) , h 6= 0 there exists Ph ∈ Qt+1(ωt) satisfying

Ph

(
h

|h|
∆St+1(ωt, ·) < −βt(ωt)

)
≥ κt(ωt).

One risky asset and one period : there exists a prior for which the
price of the risky asset increases enough and an other one for which
it decreases, P± (∓∆S(·) < −α) > α where α > 0.

The probability measure depends of the strategy.
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Quantitative and geometric NA

Quantitative NA

βt(ω
t) provides information on Dt+1(ωt) while κt(ωt) provides

information on Qt+1(ωt).

Quantitative (local) no-arbitrage condition is precious for solving the
problem of maximisation of expected utility.

When Dom(U) = (0,∞) it provides natural bounds for the one step

strategies or for U(V x,ΦT ), see [Blanchard and Carassus, 2018].

Used to prove the existence of the optimal strategy but could also
be used to compute it numerically.

Explicit values for βt and κt are given.
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Quantitative and geometric NA

Theorem

Assume that Assumptions 1 and 2 hold true. Then the NA(QT )
condition, the geometric no-arbitrage and the quantitative no-arbitrage
are equivalent and one can choose for all 0 ≤ t ≤ T − 1

ΩtNA = ΩtqNA = ΩtgNA

and βt = εt/2.

Proposition

Assume that Assumptions 1 and 2 hold true. Under one of the
no-arbitrage conditions one can choose an universally measurable version
of εt and βt.
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Second Main result

Probability measure P ∗

wNA(QT ) does not imply NA(QT ) condition.

One period model with two risky assets Si0 = 0 and Si1 : Ω→ R.

Let P1 s.t. P1(∆S1
1 ≥ 0) = 1, P1(∆S1

1 > 0) > 0.

Let P2 s.t. P2(∆S1
1 = 0) = 1, P2(±∆S2

1 > 0) > 0.

Q = {λP1 + (1− λ)P2, 0 < λ ≤ 1}.
NA(P2) and the wNA(Q) hold true.

NA(Q) condition does not hold true : Let h = (1, 0). Then
h∆S1 ≥ 0 Q-q.s. but P1(h∆S1 > 0) > 0.

Note that Aff(D) = R2 and Aff (DP2
) = {0} × R.
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Second Main result

Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

NA(QT ) holds true.

There exists some P ∗ ∈ QT such that for all 0 ≤ t ≤ T − 1,
ωt ∈ ΩtNA

Aff
(
Dt+1
P∗
)

(ωt) = Aff
(
Dt+1

)
(ωt)

0 ∈ Ri
(
Conv(Dt+1

P∗ )
)

(ωt).

NA(P ∗) condition holds true and even more.

The condition Aff
(
Dt+1
P∗

)
(·) = Aff

(
Dt+1

)
(·) Qt-q.s. is necessary

(see the preceding counterexample).

Other counterexample if 0 ∈ Ri
(
Conv(Dt+1

P∗ )
)

(·) P ∗t -p.s. instead of

0 ∈ Ri
(
Conv(Dt+1

P∗ )
)

(·) Qt-q.s.

P ∗ was used to build PT .

The probability measure P ∗ of Theorem 11 is not unique.
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Second Main result

Complement [Oblój and Wiesel, 2018, Theorem 3.1] which makes
the link with the quasi-sure setting.

The existence of P ∗ show that NA(QT ) implies that (an adaptation
of) [Rásonyi and Meireles-Rodrigues, 2018, Assumption 2.1] and
thus [Rásonyi and Meireles-Rodrigues, 2018, Theorem 3.7] which
shows the existence in the problem of maximisation of expected
utility for bounded function defined on the whole real line works
under NA(QT ).

One can choose P ∗ as common probability measure in the
quantitative definition of NA.

Allows to find universally measurable version of κt.
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of) [Rásonyi and Meireles-Rodrigues, 2018, Assumption 2.1] and
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Second Main result

Proposition

Assume that Assumptions 1. and 2. hold true. Assume furthermore that
there exists some dominating measure P̂ ∈ QT . Then

The NA(P̂ ) and the NA(QT ) conditions are equivalent.

One can choose P ∗ = P̂ in PT .

Proposition

Assume that Assumption 2. holds true and that there exists

1 some P̃ ∈ QT
2 some 0 ≤ t̃ ≤ T − 1 and some Ωt̃N ∈ Bc(Ωt̃) such that

P̃ t̃(Ωt̃N ) > 0

Qt̃+1(ωt̃) is not dominated for all ωt̃ ∈ Ωt̃N .

Then QT is not dominated.
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Suppose that T ≥ 1, d = 1 and Ωt = R for all 1 ≤ t ≤ T .

S0 = 1 and St+1 = StYt+1 where Yt+1 Borel-measurable r.v. s.t.
Yt+1(Ωt+1) = (0,∞).

Assumption 1. is verified. Let

Bt+1(ωt) := {pδu + (1− p)δd, pt(ωt) ≤ p ≤ Pt(ωt),
ut(ω

t) ≤ u ≤ Ut(ωt), dt(ωt) ≤ d ≤ Dt(ωt)},

where pt, Pt, ut, Ut, dt, Dt are Borel-measurable r.v. s.t.

pt(ω
t), Pt(ω

t) ∈ [0, 1] and pt(ω
t) < 1, Pt(ω

t) > 0

0 < dt(ω
t) < 1 < Ut(ω

t).

Then

Qt+1(ωt) := Conv
({
Q ∈ P(Ωt+1), Q (Yt+1 ∈ ·) ∈ Bt+1(ωt)

})
,

Usual binomial model corresponds : pt = Pt = p, ut = Ut = u and
dt = DT = d where 0 < p < 1, d < 1 < u.

Assumption 2. holds true.
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St+1 − St = St(Yt+1 − 1) and 0 < dt(ω
t) < 1 < Ut(ω

t)

Conv
(
Dt+1

)
(ωt) = [St(ω

t)(dt(ω
t)− 1), St(ω

t)(Ut(ω
t)− 1)].

NA(QT ) holds true : 0 ∈ Ri
(
Conv

(
Dt+1

))
(ωt) for all ωt ∈ Ωt.

If for instance ut(ω
t) < 1 for all ωt, ∃at(ωt) ∈ [ut(ω

t), 1). Let for
πt(ω

t) ∈ [pt(ω
t), Pt(ω

t)]

qt+1(∆St+1 ∈ ·, ωt) = πt(ω
t)δat(ωt)(·) +

(
1− πt(ωt)

)
δdt(ωt)(·)

Q = Q1 ⊗ · · · ⊗ qt ∈ QT

Conv
(
Dt+1
Q

)
(ωt) =

[
St(ω

t)(dt(ω
t)− 1), St(ω

t)(at(ω
t)− 1)

]
0 /∈ Ri

(
Conv

(
Dt+1
Q

))
(ωt) for all ωt ∈ Ωt and both the NA(Q)

and sNA(QT ) conditions fail.
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Explicit expressions for εt, βt and κt

εt(ω
t)

2
= βt(ω

t) =
St(ω

t)

N
min

(
Ut(ω

t)− 1

2
,

1− dt(ωt)
2

)
> 0,

κt(ω
t) =

1

M
min

(
pt(ω

t) + Pt(ω
t)

2
, 1− pt(ω

t) + Pt(ω
t)

2

)
> 0.

N > 1 and M ≥ 1 are fixed and allows to get sharper bounds.

The (Borel) measurability of εt, βt and κt are clear.

Let π̄t(ω
t) := pt(ω

t)+Pt(ω
t)

2 ∈ (0, 1) and a±, b± be chosen such that

a+
t (ωt) := Ut(ω

t) > 1, b+t (ωt) := min

(
Dt(ω

t),
dt(ω

t) + 1

2

)
< 1,

a−t (ωt) := max

(
ut(ω

t),
Ut(ω

t) + 1

2

)
> 1, b−t (ωt) := dt(ω

t) < 1,

r±t+1(·, ωt) := π̄t(ω
t)δ

a±t (ωt)
(·) + (1− π̄t(ωt))δb±t (ωt)

(·) ∈ Bt+1(ωt),

r∗t+1(·, ωt) :=
1

2

(
r+
t+1(·, ωt) + r−t+1(·, ωt)

)
∈ Bt+1(ωt),

p∗t+1(Yt+1 ∈ ·, ωt) := r∗t+1(·, ωt) ∈ Qt+1(ωt)

p∗t+1 (±∆St+1(ωt, ·) < −βt(ωt), ωt) ≥ κt(ωt).
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Choose

P ∗ := P ∗0 ⊗ · · · ⊗ p∗t+1 ⊗ · · · p∗T ∈ QT . 0 ∈ Ri
(
Conv(Dt+1

P∗ )
)

(ωt)

and that Aff
(
Dt+1
P∗

)
(ωt) = Aff

(
Dt+1

)
(ωt) for all ωt.

Note that P ∗ is not unique.

Finally, if for some 0 ≤ t ≤ T − 1, ωt ∈ Ωt, ut(ω
t) < Ut(ω

t) or
dt(ω

t) < Dt(ω
t) the set Qt+1(ωt) is non-dominated and QT is also

non-dominated.

Indeed, if not, any dominating measure would have an uncountable
number of atoms.
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Conclusion

We have understood in details the quasi-sure no arbitrage condition
and studied the link with different types of robust no-arbitrage
conditions (local or global) in discrete time.

Our main result gives the existence of a set of priors having the same
polar sets than the original one and such each priors is arbitrage free.

We give concrete examples where all the quantities appearing in the
different definitions and characterizations of NA are explicit.
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