The model	No Arbitrage	Examples	Conclusion	Références
00	000000000000000000000000000000000000000	0000		

No-arbitrage with multiple-priors in discrete time

Model Uncertainty in Risk Management, 31/01/2020

Laurence Carassus, Research Center, L. de Vinci Pôle universitaire and URCA. Joint work with Romain Blanchard.

Aim	The model	No Arbitrage	Examples	Conclusion	Références
•					
Aim of the paper					
Aim of	the pape	r			

Aim	The model	No Arbitrage	Examples	Conclusion	Références
•					
Aim of the paper					
Aim of	the pape	r			

New characterisation of the condition of quasi-sure no-arbitrage of [Bouchard and Nutz, 2015] which has become a standard assumption.

• Better economical understanding of this assumption.

Aim	The model	No Arbitrage	Examples	Conclusion	Références
•					
Aim of the paper					
Aim of	the pape	r			

- Better economical understanding of this assumption.
- Give the equivalence with several alternative notions of no-arbitrage previously used for utility maximisation.

Aim	The model	No Arbitrage	Examples	Conclusion	Références
•					
Aim of the paper					
Aim of	the pape	r			

- Better economical understanding of this assumption.
- Give the equivalence with several alternative notions of no-arbitrage previously used for utility maximisation.
- Simple proof for FTAP.

Aim	The model	No Arbitrage	Examples	Conclusion	Références
•					
Aim of the paper					
Aim of	the pape	r			

- Better economical understanding of this assumption.
- Give the equivalence with several alternative notions of no-arbitrage previously used for utility maximisation.
- Simple proof for FTAP.
- New possibility for utility maximisation.

Aim	The model	No Arbitrage	Examples	Conclusion	Références
•					
Aim of the paper					
Aim of	the pape	r			

- Better economical understanding of this assumption.
- Give the equivalence with several alternative notions of no-arbitrage previously used for utility maximisation.
- Simple proof for FTAP.
- New possibility for utility maximisation.
- Revisit the so-called geometric and quantitative no-arbitrage conditions.

Aim	The model	No Arbitrage	Examples	Conclusion	Références
•					
Aim of the paper					
Aim of	the pape	r			

- Better economical understanding of this assumption.
- Give the equivalence with several alternative notions of no-arbitrage previously used for utility maximisation.
- Simple proof for FTAP.
- New possibility for utility maximisation.
- Revisit the so-called geometric and quantitative no-arbitrage conditions.
- Explicit two important examples where all these concepts are illustrated.

	The model	No Arbitrage	Examples	Conclusion	Références
	$\odot \circ$				
Framework	and notations				

Set of priors (similar to [Bouchard and Nutz, 2015])

• Sequence $(\Omega_t)_{1 \le t \le T}$ of Polish spaces. We denote

$$\omega^t = (\omega_1, \ldots, \omega_t) \in \Omega^t := \Omega_1 \times \cdots \times \Omega_t.$$

	The model	No Arbitrage	Examples	Conclusion	Références		
	$\odot \odot$						
Framework and notations							

Set of priors (similar to [Bouchard and Nutz, 2015])

• Sequence $(\Omega_t)_{1 \le t \le T}$ of Polish spaces. We denote

$$\omega^t = (\omega_1, \ldots, \omega_t) \in \Omega^t := \Omega_1 \times \cdots \times \Omega_t.$$

Assumption 1 : the one period set of priors Q_{t+1} : ω^t ∈ Ω^t → 𝔅(Ω_{t+1}) is a non-empty and convex valued random set s.t.

 $\mathsf{Graph}(\mathcal{Q}_{t+1}) = \left\{ (\omega^t, P) \in \Omega^t \times \mathfrak{P}(\Omega_{t+1}), \ P \in \mathcal{Q}_{t+1}(\omega^t) \right\}$

is an analytic set (continuous image of a Polish space).

	The model	No Arbitrage	Examples	Conclusion	Références		
	\odot						
Framework and notations							

Set of priors (similar to [Bouchard and Nutz, 2015])

• Sequence $(\Omega_t)_{1 < t < T}$ of Polish spaces. We denote

$$\omega^t = (\omega_1, \ldots, \omega_t) \in \Omega^t := \Omega_1 \times \cdots \times \Omega_t.$$

• Assumption 1 : the one period set of priors $Q_{t+1} : \omega^t \in \Omega^t \twoheadrightarrow \mathfrak{P}(\Omega_{t+1})$ is a non-empty and convex valued random set s.t.

$$\mathsf{Graph}(\mathcal{Q}_{t+1}) = \left\{ (\omega^t, P) \in \Omega^t \times \mathfrak{P}(\Omega_{t+1}), \ P \in \mathcal{Q}_{t+1}(\omega^t) \right\}$$

is an analytic set (continuous image of a Polish space).

• Jankov-von Neumann Theorem allows to construct the set of all possible priors \mathcal{Q}^T .

$$\mathcal{Q}^T := \{ Q_1 \otimes q_2 \otimes \cdots \otimes q_T, \ Q_1 \in \mathcal{Q}_1, \ q_{s+1} \in \mathcal{S}K_{s+1}, \\ q_{s+1}(\cdot, \omega^s) \in \mathcal{Q}_{s+1}(\omega^s) \ \forall \omega^s \ \forall \ 1 \le s \le T-1 \} \}$$

where $\mathcal{S}K_{t+1}$ is the set of $\mathcal{B}_c(\Omega^t) := \bigcap_{P \in \mathfrak{P}(\Omega^t)} \mathcal{B}_P(\Omega^t)$ -meas. stochastic kernel on Ω_{t+1} given Ω^t .

	The model	No Arbitrage	Examples	Conclusion				
	00							
Traded as	Traded assets and strategies							
Fran	nework and	notations						

The traded assets and strategies

• Traded assets : $S := \{S_t, 0 \le t \le T\}$, d-dimensional process.

Fran	nework and	d notations			
Traded ass	ets and strategies				
	00				
	The model	No Arbitrage	Examples	Conclusion	Références

The traded assets and strategies

- Traded assets : $S := \{S_t, 0 \le t \le T\}$, d-dimensional process.
- Assumption 2 : S is Borel-adapted.

	The model	No Arbitrage	Examples	Conclusion	Références
	00				
Traded ass	sets and strategies				
Fran	nework and	d notations			

The traded assets and strategies

- Traded assets : $S := \{S_t, 0 \le t \le T\}$, d-dimensional process.
- Assumption 2 : S is Borel-adapted.
- Trading strategies : $\phi := \{\phi_t, 1 \le t \le T\} \in \Phi$, universally-predictable *d*-dimensional process.

— ————		d a station of			
Traded as	sets and strategies				
	$\circ \bullet$				
	The model	No Arbitrage	Examples	Conclusion	Références

The traded assets and strategies

- Traded assets : $S := \{S_t, 0 \le t \le T\}$, d-dimensional process.
- Assumption 2 : S is Borel-adapted.
- Trading strategies : $\phi := \{\phi_t, 1 \le t \le T\} \in \Phi$, universally-predictable d-dimensional process.
- Trading is self-financing. Riskless asset's price is constant 1.

$$V_t^{x,\phi} = x + \sum_{s=1}^t \phi_s \Delta S_s.$$

		No Arbitrage	Examples	Conclusion	
		● 0000 00000000000000000			
Global NA					
No-ar	bitrage c	onditions			

Monoprior NA(P)

 $NA(P): \ V^{0,\phi}_T \geq 0 \ P\text{-a.s.} \ \text{ for some } \phi \in \Phi \ \Rightarrow V^{0,\phi}_T = 0 \ P\text{-a.s.}$

		No Arbitrage	Examples	Conclusion	
		••••••			
Global NA					
No-a	rhitrage c	onditions			

Monoprior NA(P)

$$NA(P): V_T^{0,\phi} \ge 0 \ P$$
-a.s. for some $\phi \in \Phi \implies V_T^{0,\phi} = 0 \ P$ -a.s.

Robust NA

$$NA(\mathcal{Q}^T): V_T^{0,\phi} \ge 0 \ \mathcal{Q}^T$$
-q.s. for some $\phi \in \Phi \Rightarrow V_T^{0,\phi} = 0 \ \mathcal{Q}^T$ -q.s.

See Bouchard and Nutz [2015]

 $N \subset \Omega^T$ is called a \mathcal{Q}^T -polar set if $\forall P \in \mathcal{Q}^T$, $\exists A_P \in \mathcal{B}(X)$ such that $P(A_P) = 0$ and $N \subset A_P$. Holds true \mathcal{Q}^T -q.s. : outside a \mathcal{Q}^T -polar set. \mathcal{Q}^T -full measure set : complement of a \mathcal{Q}^T -polar set.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Global NA					
No-ai	bitrage c	onditions			

• Is $NA(Q^T)$ the "right" condition?

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Global NA					
No-ar	bitrage c	onditions			

- Is $NA(\mathcal{Q}^T)$ the "right" condition ?
- Under this condition it is not even clear if there exists a model $P \in Q^T$ satisfying NA(P). We will prove that this is in fact possible.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Global NA					
No-ar	bitrage c	onditions			

- Is $NA(Q^T)$ the "right" condition?
- Under this condition it is not even clear if there exists a model $P \in Q^T$ satisfying NA(P). We will prove that this is in fact possible.
- Nevertheless, \mathcal{Q}^T might still contain some models that are not arbitrage free.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Global NA					
No-a	rbitrage c	onditions			

- Is $NA(\mathcal{Q}^T)$ the "right" condition?
- Under this condition it is not even clear if there exists a model $P \in Q^T$ satisfying NA(P). We will prove that this is in fact possible.
- Nevertheless, Q^T might still contain some models that are not arbitrage free.
- An agent may not be able to delta-hedge a simple vanilla option using different levels of volatility in a arbitrage free way.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Global NA					
No-art	oitrage con	ditions			

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Global NA					
No-ai	rbitrage c	onditions			

Strong NA

$sNA(Q^T): NA(P), \ \forall P \in Q^T.$

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Global NA					
No-ar	bitrage c	onditions			

Strong NA

$sNA(Q^T): NA(P), \ \forall P \in Q^T.$

 sNA(Q^T) is useful to obtain tractable theorems for expected utility maximisation for unbounded function, see [Blanchard and Carassus, 2018] and [Rásonyi and Meireles-Rodrigues, 2018].

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Global NA					
No-a	rbitrage c	onditions			

Strong NA

 $sNA(\mathcal{Q}^T): NA(P), \ \forall P \in \mathcal{Q}^T.$

- sNA(Q^T) is useful to obtain tractable theorems for expected utility maximisation for unbounded function, see [Blanchard and Carassus, 2018] and [Rásonyi and Meireles-Rodrigues, 2018].
- This definition seems also relevant in a continuous time setting for studying the no-arbitrage characterisation, see [Biagini et al., 2015].

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Global NA					
N I	1.1.1	1. A start sta Start start st Start start			

No-arbitrage characterisations

Weak NA

$wNA(\mathcal{Q}^T): \exists P \in \mathcal{Q}^T \text{ s.t. } NA(P).$

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Global NA					
No-ar	bitrage c	haracterisations			

Weak NA

$$wNA(\mathcal{Q}^T): \exists P \in \mathcal{Q}^T \text{ s.t. } NA(P).$$

The contraposition of the $wNA(\mathcal{Q}^T)$ condition is that for all models $P \in \mathcal{Q}^T$, there exists a strategy ϕ_P such that $V_T^{0,\phi_P} \ge 0$ *P*-a.s. and $P(V_T^{0,\phi_P} > 0) > 0$.

A concrete example of a such model-dependent arbitrage is given in [Davis and Hobson, 2007].

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Global NA					

 $\ensuremath{\operatorname{Figure}}$ – Simple relations between the no-arbitrage definitions.

	No Arbitrage	Examples	Conclusion	
Global NA				

Assume that Assumptions 1. and 2. hold true. TFAE

• $NA(\mathcal{Q}^T)$ holds true.

	No Arbitrage	Examples	Conclusion	
Global NA				

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $\mathcal{P}^T \subset \mathcal{Q}^T$ s.t.

	No Arbitrage	Examples	Conclusion	
Global NA				

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $\mathcal{P}^T \subset \mathcal{Q}^T$ s.t.

() \mathcal{P}^T and \mathcal{Q}^T have the same polar-sets

	No Arbitrage	Examples	Conclusion	
Global NA				

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $\mathcal{P}^T \subset \mathcal{Q}^T$ s.t.

P^T and *Q^T* have the same polar-sets
sNA(*P^T*) holds true i.e. NA(*P*) for all *P* ∈ *P^T*.

	No Arbitrage	Examples	Conclusion	
Global NA				

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $\mathcal{P}^T \subset \mathcal{Q}^T$ s.t.

1 \mathcal{P}^T and \mathcal{Q}^T have the same polar-sets **2** $sNA(\mathcal{P}^T)$ holds true i.e. NA(P) for all $P \in \mathcal{P}^T$.

Let P^* as in Theorem 11 below with the fix disintegration $P^* := P_1^* \otimes p_2^* \otimes \cdots \otimes p_T^*$. The set \mathcal{P}^T is defined recursively as follows :

$$\mathcal{P}^{1} := \left\{ \lambda P_{1}^{*} + (1 - \lambda) P, \ 0 < \lambda \leq 1, \ P \in \mathcal{Q}^{1} \right\},$$
$$\mathcal{P}^{t+1} := \left\{ P_{t} \otimes \left(\lambda p_{t+1}^{*} + (1 - \lambda) q_{t+1} \right), \ 0 < \lambda \leq 1,$$
$$P_{t} \in \mathcal{P}^{t}, \ q_{t+1}(\cdot, \omega^{t}) \in \mathcal{Q}_{t+1}(\omega^{t}) \ \forall \omega^{t} \in \Omega^{t} \right\}.$$

	The model	No Arbitrage	Examples	Conclusion	Références
		00000 0000000000 000000			
Applications					
Applic	ations				

Equivalence between the $NA(\mathcal{Q}^T)$ condition and the no-arbitrage condition introduced by [Bartl et al., 2019] which studies the problem of robust maximisation of expected utility using medial limits.

		No Arbitrage	Examples	Conclusion	
		00000 000 0000000000			
Applications					
Applica	ations				

Equivalence between the $NA(Q^T)$ condition and the no-arbitrage condition introduced by [Bartl et al., 2019] which studies the problem of robust maximisation of expected utility using medial limits.

Corollary

Assume that Assumptions 1. and 2. hold true. The following conditions are equivalent

- The $NA(\mathcal{Q}^T)$ condition holds true.
- For all $Q \in Q^T$, there exists some $P \in \mathcal{P}^T$ such that $Q \ll P$ and such that NA(P) holds true.
- For all $Q \in Q^T$, there exists some $P \in Q^T$ such that $Q \ll P$ and such that NA(P) holds true.

		No Arbitrage	Examples	Conclusion	
		00000 0000 000000000000000			
Applications					
Applic	ations				

Robust FTAP of [Bouchard and Nutz, 2015].

$$\begin{split} \mathcal{R}^{T} &:= \{P \in \mathfrak{P}(\Omega^{T}), \; \exists \, Q^{'} \in \mathcal{Q}^{T}, P \ll Q^{'} \text{ and } P \text{ is a martingale measure} \}. \\ \mathcal{K}^{T} &:= \{P \in \mathfrak{P}(\Omega^{T}), \; \exists \, Q^{'} \in \mathcal{P}^{T}, P \sim Q^{'} \text{ and } P \text{ is a martingale measure} \}. \end{split}$$
		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Applications					
Applica	ations				

Robust FTAP of [Bouchard and Nutz, 2015].

$$\begin{split} \mathcal{R}^{T} &:= \{P \in \mathfrak{P}(\Omega^{T}), \; \exists \, Q^{'} \in \mathcal{Q}^{T}, P \ll Q^{'} \text{ and } P \text{ is a martingale measure} \}.\\ \mathcal{K}^{T} &:= \{P \in \mathfrak{P}(\Omega^{T}), \; \exists \, Q^{'} \in \mathcal{P}^{T}, P \sim Q^{'} \text{ and } P \text{ is a martingale measure} \}. \end{split}$$

Corollary

Assume that Assumptions 1. and 2. hold true. The following conditions are equivalent

- The $NA(Q^T)$ condition holds true.
- For all $Q \in Q^T$, there exists some $P \in \mathcal{K}^T$ such that $Q \ll P$.
- For all $Q \in Q^T$, there exists some $P \in \mathcal{R}^T$ such that $Q \ll P$.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Applications					
Appl	ications				

Random Utility

- $U:\ \Omega^T\times\mathbb{R}\to\mathbb{R}\cup\{-\infty\}$ such that
 - for every $x \in \mathbb{R}$, $U(\cdot, x): \ \Omega^T \to \mathbb{R} \cup \{\pm \infty\}$ is $\mathcal{B}(\Omega^T)$ -measurable,
 - for all $\omega^T \in \Omega^T$, $U(\omega^T, \cdot)$: $\mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ is non-decreasing and concave on $(0, \infty)$

•
$$U(\cdot, x) = -\infty$$
, for all $x < 0$.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Applications					
Appl	ications				

Random Utility

$$U: \ \Omega^T imes \mathbb{R} o \mathbb{R} \cup \{-\infty\}$$
 such that

- for every $x \in \mathbb{R}$, $U(\cdot, x): \ \Omega^T \to \mathbb{R} \cup \{\pm \infty\}$ is $\mathcal{B}(\Omega^T)$ -measurable,
- for all $\omega^T \in \Omega^T$, $U(\omega^T, \cdot)$: $\mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ is non-decreasing and concave on $(0, \infty)$

•
$$U(\cdot, x) = -\infty$$
, for all $x < 0$.

Robust portfolio problem with initial wealth x

$$u(x) := \sup_{\phi \in \Phi(x, U, Q^T)} \inf_{P \in Q^T} E_P U(\cdot, V_T^{x, \phi}(\cdot)).$$
(1)

where $\Phi(x, U, Q^T)$ is the set of all strategies, s.t $V_T^{x, \phi}(\cdot) \ge 0 \ Q^T$ -q.s. and $E_P U^+(\cdot, V_T^{x, \phi}(\cdot)) < \infty$ or $E_P U^-(\cdot, V_T^{x, \phi}(\cdot)) < \infty$ for all $P \in Q^T$.

		No Arbitrage	Examples	Conclusion	
		00000 000 0000000000000000			
Applications					
Applica	ations				

Assumption 3 : We have that $U^+(\cdot, 1), U^-(\cdot, \frac{1}{4}) \in \mathcal{W}_T$ and $\Delta S_t, 1/\alpha_t^P \in \mathcal{W}_t$ for all $1 \leq t \leq T$ and $P \in \mathcal{P}^t$, where

$$\mathcal{W}_t := \bigcap_{r>0} \left\{ X : \Omega^t \to \mathbb{R} \cup \{\pm \infty\}, \ \mathcal{B}(\Omega^t) \text{-measurable}, \ \sup_{P \in \mathcal{Q}^t} E_P |X|^r < \infty \right\}.$$

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Applications					
Applica	ations				

Assumption 3 : We have that $U^+(\cdot, 1), U^-(\cdot, \frac{1}{4}) \in \mathcal{W}_T$ and $\Delta S_t, 1/\alpha_t^P \in \mathcal{W}_t$ for all $1 \leq t \leq T$ and $P \in \mathcal{P}^t$, where

$$\mathcal{W}_t := \bigcap_{r>0} \left\{ X : \Omega^t \to \mathbb{R} \cup \{\pm \infty\}, \ \mathcal{B}(\Omega^t) \text{-measurable}, \ \sup_{P \in \mathcal{Q}^t} E_P |X|^r < \infty \right\}.$$

Corollary

Assume that the $NA(Q^T)$ condition and Assumptions 1. and 2. hold true. Furthermore, assume that U is either bounded from above or that Assumption 3. holds true. Then for all $x \ge 0$.

$$u(x) = u^{\mathcal{P}}(x) := \sup_{\phi \in \Phi(x, U, \mathcal{P}^T)} \inf_{P \in \mathcal{P}^T} E_P U(\cdot, V_T^{x, \phi}(\cdot)).$$

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Quantitative and	geometric characterisation				
Local	NA				

First part of [Bouchard and Nutz, 2015, Theorem 4.5]

Theorem

Assume that Assumptions 1 and 2 hold true. Then the following statements are equivalent :

1. The $NA(Q^T)$ condition holds true. 2. For all $0 \le t \le T - 1$, there exists a Q^t -full measure set $\Omega_{NA}^t \in \mathcal{B}_c(\Omega^t)$ such that for all $\omega^t \in \Omega_{NA}^t$,

 $h\Delta S_{t+1}(\boldsymbol{\omega}^t,\cdot) \geq 0 \ \mathcal{Q}_{t+1}(\boldsymbol{\omega}^t) - \textbf{q.s.} \Rightarrow h\Delta S_{t+1}(\boldsymbol{\omega}^t,\cdot) = 0 \ \mathcal{Q}_{t+1}(\boldsymbol{\omega}^t) - \textbf{q.s.}$

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Quantitative and	geometric NA				

Measurability of the supports

Lemma

Let $P \in Q^T$ with a fixed disintegration $P := Q_1 \otimes q_2 \otimes \cdots \otimes q_T$. Under Assumptions 1 and 2, the following supports of the conditional distribution of $\Delta S_{t+1}(\omega^t, \cdot)$

$$\begin{split} D^{t+1}(\omega^t) &:= & \bigcap \left\{ A \subset \mathbb{R}^d, \text{ closed}, \ P_{t+1}\left(\Delta S_{t+1}(\omega^t, .) \in A\right) = 1, \ \forall \ P_{t+1} \in \mathcal{Q}_{t+1}(\omega^t) \right\} \\ D^{t+1}_P(\omega^t) &:= & \bigcap \left\{ A \subset \mathbb{R}^d, \ \text{closed}, \ q_{t+1}\left(\Delta S_{t+1}(\omega^t, .) \in A, \omega^t\right) = 1 \right\}, \end{split}$$

are non-empty, closed valued random set with graphs in $\mathcal{B}_c(\Omega^t) \otimes \mathcal{B}(\mathbb{R}^d)$.

	The model	No Arbitrage	Examples	Conclusion	Références				
		00000000 000000 00000							
Quantitativ	Quantitative and geometric NA								
Geor	metric NA								

Geometric view in the spirit of [Jacod and Shiryaev, 1998, Theorem 3g)]. Recall that $\operatorname{Ri}(C) = \{y \in C, \exists \varepsilon > 0, \operatorname{Aff}(C) \cap B(y, \varepsilon) \subset C\}.$

Definition

The geometric no-arbitrage condition holds true if for all $0 \le t \le T - 1$, there exists some \mathcal{Q}^t -full measure set $\Omega^t_{gNA} \in \mathcal{B}_c(\Omega^t)$ such that for all $\omega^t \in \Omega^t_{gNA}$, $0 \in \operatorname{Ri}\left(\operatorname{Conv}(D^{t+1})\right)(\omega^t)$. In this case for all $\omega^t \in \Omega^t_{gNA}$, there exists $\varepsilon_t(\omega^t) > 0$ such that $B(0, \varepsilon_t(\omega^t)) \cap \operatorname{Aff}\left(D^{t+1}\right)(\omega^t) \subset \operatorname{Conv}\left(D^{t+1}\right)(\omega^t)$.

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Quantitativ	e and geometric NA				
Geo	metric NA				

Geometric view in the spirit of [Jacod and Shiryaev, 1998, Theorem 3g)]. Recall that $\operatorname{Ri}(C) = \{y \in C, \exists \varepsilon > 0, \operatorname{Aff}(C) \cap B(y, \varepsilon) \subset C\}.$

Definition

The geometric no-arbitrage condition holds true if for all $0 \le t \le T - 1$, there exists some \mathcal{Q}^t -full measure set $\Omega^t_{gNA} \in \mathcal{B}_c(\Omega^t)$ such that for all $\omega^t \in \Omega^t_{gNA}$, $0 \in \operatorname{Ri}\left(\operatorname{Conv}(D^{t+1})\right)(\omega^t)$. In this case for all $\omega^t \in \Omega^t_{gNA}$, there exists $\varepsilon_t(\omega^t) > 0$ such that $B(0, \varepsilon_t(\omega^t)) \cap \operatorname{Aff}\left(D^{t+1}\right)(\omega^t) \subset \operatorname{Conv}\left(D^{t+1}\right)(\omega^t)$.

• The geometric (local) no-arbitrage condition is indeed practical : it allows to check whether the (global) NA(Q^T) condition holds true or not.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Quantitative	and geometric NA				
Geor	netric NA				

Geometric view in the spirit of [Jacod and Shiryaev, 1998, Theorem 3g)]. Recall that $\operatorname{Ri}(C) = \{y \in C, \exists \varepsilon > 0, \operatorname{Aff}(C) \cap B(y, \varepsilon) \subset C\}.$

Definition

The geometric no-arbitrage condition holds true if for all $0 \le t \le T - 1$, there exists some \mathcal{Q}^t -full measure set $\Omega^t_{gNA} \in \mathcal{B}_c(\Omega^t)$ such that for all $\omega^t \in \Omega^t_{gNA}$, $0 \in \operatorname{Ri}\left(\operatorname{Conv}(D^{t+1})\right)(\omega^t)$. In this case for all $\omega^t \in \Omega^t_{gNA}$, there exists $\varepsilon_t(\omega^t) > 0$ such that

$$B(0, \varepsilon_t(\omega^t)) \cap \operatorname{Aff}\left(D^{t+1}\right)(\omega^t) \subset \operatorname{Conv}\left(D^{t+1}\right)(\omega^t).$$

- The geometric (local) no-arbitrage condition is indeed practical : it allows to check whether the (global) NA(Q^T) condition holds true or not.
- As Q_{t+1} and ΔS_{t+1} are given one gets Ri $(Conv(D^{t+1}))(\cdot)$ and it is easy to check whether 0 is in it or not.

	The model	No Arbitrage	Examples	Conclusion	Références				
		000000000000000000000000000000000000000							
Quantitativ	Quantitative and geometric NA								
Qua	ntitative N	JA							

Quantitative view the spirit of [Rásonyi and Stettner, 2005, Proposition 3.3]

Definition

The quantitative no-arbitrage condition holds true if for all $0 \leq t \leq T-1$, there exists some \mathcal{Q}^t -full measure set $\Omega^t_{qNA} \in \mathcal{B}_c(\Omega^t)$ such that for all $\omega^t \in \Omega^t_{qNA}$, there exists $\beta_t(\omega^t), \kappa_t(\omega^t) \in (0, 1]$ such that for all $h \in \operatorname{Aff}(D^{t+1})(\omega^t)$, $h \neq 0$ there exists $P_h \in \mathcal{Q}_{t+1}(\omega^t)$ satisfying

$$P_h\left(\frac{h}{|h|}\Delta S_{t+1}(\omega^t, \cdot) < -\beta_t(\omega^t)\right) \ge \kappa_t(\omega^t).$$

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Quantitative	and geometric NA				
Quar	ntitative N	IA			

Quantitative view the spirit of [Rásonyi and Stettner, 2005, Proposition 3.3]

Definition

The quantitative no-arbitrage condition holds true if for all $0 \leq t \leq T-1$, there exists some \mathcal{Q}^t -full measure set $\Omega^t_{qNA} \in \mathcal{B}_c(\Omega^t)$ such that for all $\omega^t \in \Omega^t_{qNA}$, there exists $\beta_t(\omega^t), \kappa_t(\omega^t) \in (0, 1]$ such that for all $h \in \operatorname{Aff}(D^{t+1})(\omega^t)$, $h \neq 0$ there exists $P_h \in \mathcal{Q}_{t+1}(\omega^t)$ satisfying

$$P_h\left(\frac{h}{|h|}\Delta S_{t+1}(\omega^t, \cdot) < -\beta_t(\omega^t)\right) \ge \kappa_t(\omega^t).$$

• One risky asset and one period : there exists a prior for which the price of the risky asset increases enough and an other one for which it decreases, $P^{\pm} (\mp \Delta S(\cdot) < -\alpha) > \alpha$ where $\alpha > 0$.

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Quantitative	and geometric NA				
Quar	ntitative N	IA			

Quantitative view the spirit of [Rásonyi and Stettner, 2005, Proposition 3.3]

Definition

The quantitative no-arbitrage condition holds true if for all $0 \leq t \leq T-1$, there exists some \mathcal{Q}^t -full measure set $\Omega^t_{qNA} \in \mathcal{B}_c(\Omega^t)$ such that for all $\omega^t \in \Omega^t_{qNA}$, there exists $\beta_t(\omega^t), \kappa_t(\omega^t) \in (0,1]$ such that for all $h \in \operatorname{Aff}(D^{t+1})(\omega^t)$, $h \neq 0$ there exists $P_h \in \mathcal{Q}_{t+1}(\omega^t)$ satisfying

$$P_h\left(\frac{h}{|h|}\Delta S_{t+1}(\omega^t, \cdot) < -\beta_t(\omega^t)\right) \ge \kappa_t(\omega^t).$$

- One risky asset and one period : there exists a prior for which the price of the risky asset increases enough and an other one for which it decreases, $P^{\pm}(\mp\Delta S(\cdot) < -\alpha) > \alpha$ where $\alpha > 0$.
- The probability measure depends of the strategy.

		No Arbitrage	Examples	Conclusion			
		000000000000000000000000000000000000000					
Quantitative and	Quantitative and geometric NA						
Quant	itative NA						

• $\beta_t(\omega^t)$ provides information on $D^{t+1}(\omega^t)$ while $\kappa_t(\omega^t)$ provides information on $Q_{t+1}(\omega^t)$.

	The model	No Arbitrage	Examples	Conclusion	Références		
		000000000 000000 00000					
Quantitative and	Quantitative and geometric NA						
Quant	itative NA						

- $\beta_t(\omega^t)$ provides information on $D^{t+1}(\omega^t)$ while $\kappa_t(\omega^t)$ provides information on $Q_{t+1}(\omega^t)$.
- Quantitative (local) no-arbitrage condition is precious for solving the problem of maximisation of expected utility.

		No Arbitrage	Examples	Conclusion	
		000000000 000000 00000			
Quantitative and	geometric NA				
Quant	itative NA				

- $\beta_t(\omega^t)$ provides information on $D^{t+1}(\omega^t)$ while $\kappa_t(\omega^t)$ provides information on $Q_{t+1}(\omega^t)$.
- Quantitative (local) no-arbitrage condition is precious for solving the problem of maximisation of expected utility.
- When $\text{Dom}(U) = (0, \infty)$ it provides natural bounds for the one step strategies or for $U(V_T^{x,\Phi})$, see [Blanchard and Carassus, 2018].

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000 000000 00000			
Quantitative and	geometric NA				
Quant	itative NA				

- $\beta_t(\omega^t)$ provides information on $D^{t+1}(\omega^t)$ while $\kappa_t(\omega^t)$ provides information on $Q_{t+1}(\omega^t)$.
- Quantitative (local) no-arbitrage condition is precious for solving the problem of maximisation of expected utility.
- When $\text{Dom}(U) = (0, \infty)$ it provides natural bounds for the one step strategies or for $U(V_T^{x,\Phi})$, see [Blanchard and Carassus, 2018].
- Used to prove the existence of the optimal strategy but could also be used to compute it numerically.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Quantitative and	geometric NA				
Quant	itative NA				

- $\beta_t(\omega^t)$ provides information on $D^{t+1}(\omega^t)$ while $\kappa_t(\omega^t)$ provides information on $Q_{t+1}(\omega^t)$.
- Quantitative (local) no-arbitrage condition is precious for solving the problem of maximisation of expected utility.
- When $\text{Dom}(U) = (0, \infty)$ it provides natural bounds for the one step strategies or for $U(V_T^{x,\Phi})$, see [Blanchard and Carassus, 2018].
- Used to prove the existence of the optimal strategy but could also be used to compute it numerically.
- Explicit values for β_t and κ_t are given.

	The model	No Arbitrage	Examples	Conclusion	Références	
		000000000 0000 00000				
Quantitative and geometric NA						

Assume that Assumptions 1 and 2 hold true. Then the $NA(Q^T)$ condition, the geometric no-arbitrage and the quantitative no-arbitrage are equivalent and one can choose for all $0 \le t \le T - 1$

$$\Omega_{NA}^t = \Omega_{qNA}^t = \Omega_{gNA}^t$$

and $\beta_t = \varepsilon_t/2$.

	The model	No Arbitrage	Examples	Conclusion	Références	
		0000000000 0000 00000				
Quantitative and geometric NA						

Assume that Assumptions 1 and 2 hold true. Then the $NA(Q^T)$ condition, the geometric no-arbitrage and the quantitative no-arbitrage are equivalent and one can choose for all $0 \le t \le T - 1$

$$\Omega_{NA}^t = \Omega_{qNA}^t = \Omega_{gNA}^t$$

and $\beta_t = \varepsilon_t/2$.

Proposition

Assume that Assumptions 1 and 2 hold true. Under one of the no-arbitrage conditions one can choose an universally measurable version of ε_t and β_t .

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Second Main	result				
Prob	ability me	easure P^*			

• $wNA(\mathcal{Q}^T)$ does not imply $NA(\mathcal{Q}^T)$ condition.

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Second Main	result				
Prob	ability me	asure P^*			

- $wNA(\mathcal{Q}^T)$ does not imply $NA(\mathcal{Q}^T)$ condition.
- One period model with two risky assets $S_0^i = 0$ and $S_1^i : \Omega \to \mathbb{R}$.

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Second Main	n result				
Prob	ability me	asure P^*			

- $wNA(\mathcal{Q}^T)$ does not imply $NA(\mathcal{Q}^T)$ condition.
- One period model with two risky assets $S_0^i = 0$ and $S_1^i : \Omega \to \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S_1^1 \ge 0) = 1$, $P_1(\Delta S_1^1 > 0) > 0$.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Second Main	result				
Prob	ability me	asure P^*			

- $wNA(\mathcal{Q}^T)$ does not imply $NA(\mathcal{Q}^T)$ condition.
- One period model with two risky assets $S_0^i = 0$ and $S_1^i : \Omega \to \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S_1^1 \ge 0) = 1$, $P_1(\Delta S_1^1 > 0) > 0$.
- Let P_2 s.t. $P_2(\Delta S_1^1 = 0) = 1$, $P_2(\pm \Delta S_1^2 > 0) > 0$.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Second Main	result				
Proba	ability me	asure P^*			

- $wNA(\mathcal{Q}^T)$ does not imply $NA(\mathcal{Q}^T)$ condition.
- One period model with two risky assets $S_0^i = 0$ and $S_1^i : \Omega \to \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S_1^1 \ge 0) = 1$, $P_1(\Delta S_1^1 > 0) > 0$.
- Let P_2 s.t. $P_2(\Delta S_1^1 = 0) = 1$, $P_2(\pm \Delta S_1^2 > 0) > 0$.
- $Q = \{\lambda P_1 + (1 \lambda)P_2, \ 0 < \lambda \le 1\}.$

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Second Main	result				
Proba	ability me	asure P^*			

- $wNA(\mathcal{Q}^T)$ does not imply $NA(\mathcal{Q}^T)$ condition.
- One period model with two risky assets $S_0^i = 0$ and $S_1^i : \Omega \to \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S_1^1 \ge 0) = 1$, $P_1(\Delta S_1^1 > 0) > 0$.
- Let P_2 s.t. $P_2(\Delta S_1^1 = 0) = 1$, $P_2(\pm \Delta S_1^2 > 0) > 0$.
- $Q = \{\lambda P_1 + (1 \lambda)P_2, \ 0 < \lambda \le 1\}.$
- $NA(P_2)$ and the wNA(Q) hold true.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Second Main	result				
Proba	ability me	asure P^*			

- $wNA(\mathcal{Q}^T)$ does not imply $NA(\mathcal{Q}^T)$ condition.
- One period model with two risky assets $S_0^i = 0$ and $S_1^i : \Omega \to \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S_1^1 \ge 0) = 1$, $P_1(\Delta S_1^1 > 0) > 0$.
- Let P_2 s.t. $P_2(\Delta S_1^1 = 0) = 1$, $P_2(\pm \Delta S_1^2 > 0) > 0$.
- $Q = \{\lambda P_1 + (1 \lambda)P_2, \ 0 < \lambda \le 1\}.$
- $NA(P_2)$ and the wNA(Q) hold true.
- $NA(\mathcal{Q})$ condition does not hold true : Let h = (1,0). Then $h\Delta S_1 \ge 0$ \mathcal{Q} -q.s. but $P_1(h\Delta S_1 > 0) > 0$.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Second Main	result				
Proba	ability me	asure P^*			

- $wNA(\mathcal{Q}^T)$ does not imply $NA(\mathcal{Q}^T)$ condition.
- One period model with two risky assets $S_0^i = 0$ and $S_1^i : \Omega \to \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S_1^1 \ge 0) = 1$, $P_1(\Delta S_1^1 > 0) > 0$.
- Let P_2 s.t. $P_2(\Delta S_1^1 = 0) = 1$, $P_2(\pm \Delta S_1^2 > 0) > 0$.

•
$$\mathcal{Q} = \{\lambda P_1 + (1-\lambda)P_2, 0 < \lambda \le 1\}.$$

- $NA(P_2)$ and the $wNA(\mathcal{Q})$ hold true.
- $NA(\mathcal{Q})$ condition does not hold true : Let h = (1, 0). Then $h\Delta S_1 \ge 0$ \mathcal{Q} -q.s. but $P_1(h\Delta S_1 > 0) > 0$.
- Note that $\operatorname{Aff}(D) = \mathbb{R}^2$ and $\operatorname{Aff}(D_{P_2}) = \{0\} \times \mathbb{R}$.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Second Mair	n result				
	heorem				

Assume that Assumptions 1. and 2. hold true. TFAE

• $NA(\mathcal{Q}^T)$ holds true.

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Second Main resul	t				

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $P^* \in Q^T$ such that for all $0 \le t \le T 1$, $\omega^t \in \Omega^t_{NA}$

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Second Main result	t				

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $P^* \in Q^T$ such that for all $0 \le t \le T 1$, $\omega^t \in \Omega_{NA}^t$
 - $\operatorname{Aff}\left(D_{P^*}^{t+1}\right)(\omega^t) = \operatorname{Aff}\left(D^{t+1}\right)(\omega^t)$

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Second Main resul	t				

Assume that Assumptions 1. and 2. hold true. TFAE

• $NA(\mathcal{Q}^T)$ holds true.

• There exists some $P^* \in Q^T$ such that for all $0 \le t \le T - 1$, $\omega^t \in \Omega_{NA}^t$

•
$$Aff(D_{P^*}^{t+1})(\omega^t) = Aff(D^{t+1})(\omega^t)$$

•
$$0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\omega^t).$$

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Second Main result	t				

Assume that Assumptions 1. and 2. hold true. TFAE

• $NA(Q^T)$ holds true.

• There exists some $P^* \in Q^T$ such that for all $0 \le t \le T - 1$, $\omega^t \in \Omega^t_{NA}$

•
$$Aff(D_{P^*}^{t+1})(\omega^t) = Aff(D^{t+1})(\omega^t)$$

•
$$0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\omega^t).$$

• $NA(P^*)$ condition holds true and even more.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Second Main resul	t				

Assume that Assumptions 1. and 2. hold true. TFAE

• $NA(Q^T)$ holds true.

• There exists some $P^* \in Q^T$ such that for all $0 \le t \le T - 1$, $\omega^t \in \Omega^t_{NA}$

•
$$Aff(D_{P^*}^{t+1})(\omega^t) = Aff(D^{t+1})(\omega^t)$$

•
$$0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\omega^t).$$

- $NA(P^*)$ condition holds true and even more.
- The condition Aff (D^{t+1}_{P*}) (·) = Aff (D^{t+1}) (·) Q^t-q.s. is necessary (see the preceding counterexample).

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Second Main result	t				

Assume that Assumptions 1. and 2. hold true. TFAE

• $NA(Q^T)$ holds true.

• There exists some $P^* \in Q^T$ such that for all $0 \le t \le T - 1$, $\omega^t \in \Omega^t_{NA}$

•
$$\operatorname{Aff}\left(D_{P^*}^{t+1}\right)(\omega^t) = \operatorname{Aff}\left(D^{t+1}\right)(\omega^t)$$

•
$$0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\omega^t).$$

- $NA(P^*)$ condition holds true and even more.
- The condition $\operatorname{Aff}\left(D_{P^*}^{t+1}\right)(\cdot) = \operatorname{Aff}\left(D^{t+1}\right)(\cdot) \mathcal{Q}^t$ -q.s. is necessary (see the preceding counterexample).
- Other counterexample if $0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\cdot) P_t^*$ -p.s. instead of $0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\cdot) \mathcal{Q}^t$ -q.s.

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Second Main resul	t				

Assume that Assumptions 1. and 2. hold true. TFAE

• $NA(Q^T)$ holds true.

• There exists some $P^* \in Q^T$ such that for all $0 \le t \le T - 1$, $\omega^t \in \Omega^t_{NA}$

•
$$Aff(D_{P^*}^{t+1})(\omega^t) = Aff(D^{t+1})(\omega^t)$$

•
$$0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\omega^t).$$

- $NA(P^*)$ condition holds true and even more.
- The condition $\operatorname{Aff}\left(D_{P^*}^{t+1}\right)(\cdot) = \operatorname{Aff}\left(D^{t+1}\right)(\cdot) \mathcal{Q}^t$ -q.s. is necessary (see the preceding counterexample).
- Other counterexample if $0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\cdot) P_t^*$ -p.s. instead of $0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\cdot) \mathcal{Q}^t$ -q.s.
- P^* was used to build \mathcal{P}^T .
| | The model | No Arbitrage | Examples | Conclusion | Références |
|--------------------|--------------------|---|----------|------------|------------|
| | | 000000000000000000000000000000000000000 | | | |
| Second Main result | Second Main result | | | | |

Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

• $NA(Q^T)$ holds true.

• There exists some $P^* \in Q^T$ such that for all $0 \le t \le T - 1$, $\omega^t \in \Omega^t_{NA}$

•
$$Aff(D_{P^*}^{t+1})(\omega^t) = Aff(D^{t+1})(\omega^t)$$

•
$$0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\omega^t).$$

- $NA(P^*)$ condition holds true and even more.
- The condition $\operatorname{Aff}\left(D_{P^*}^{t+1}\right)(\cdot) = \operatorname{Aff}\left(D^{t+1}\right)(\cdot) \mathcal{Q}^t$ -q.s. is necessary (see the preceding counterexample).
- Other counterexample if $0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\cdot) P_t^*$ -p.s. instead of $0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\cdot) \mathcal{Q}^t$ -q.s.
- P^* was used to build \mathcal{P}^T .
- The probability measure P^* of Theorem 11 is not unique.

	The model	No Arbitrage	Examples	Conclusion	Références	
		000000000000000000000000000000000000000				
Second Main result						

• Complement [Oblój and Wiesel, 2018, Theorem 3.1] which makes the link with the quasi-sure setting.

	The model	No Arbitrage	Examples	Conclusion	Références		
		000000000000000000000000000000000000000					
Second Main r	Second Main result						

- Complement [Oblój and Wiesel, 2018, Theorem 3.1] which makes the link with the quasi-sure setting.
- The existence of P^* show that $NA(\mathcal{Q}^T)$ implies that (an adaptation of) [Rásonyi and Meireles-Rodrigues, 2018, Assumption 2.1] and thus [Rásonyi and Meireles-Rodrigues, 2018, Theorem 3.7] which shows the existence in the problem of maximisation of expected utility for bounded function defined on the whole real line works under $NA(\mathcal{Q}^T)$.

	The model	No Arbitrage	Examples	Conclusion	Références		
		000000000000000000000000000000000000000					
Second Main	Second Main result						

- Complement [Oblój and Wiesel, 2018, Theorem 3.1] which makes the link with the quasi-sure setting.
- The existence of P^* show that $NA(\mathcal{Q}^T)$ implies that (an adaptation of) [Rásonyi and Meireles-Rodrigues, 2018, Assumption 2.1] and thus [Rásonyi and Meireles-Rodrigues, 2018, Theorem 3.7] which shows the existence in the problem of maximisation of expected utility for bounded function defined on the whole real line works under $NA(\mathcal{Q}^T)$.
- One can choose P^* as common probability measure in the quantitative definition of NA.

	The model	No Arbitrage	Examples	Conclusion	Références		
		000000000000000000000000000000000000000					
Second Main	Second Main result						

- Complement [Oblój and Wiesel, 2018, Theorem 3.1] which makes the link with the quasi-sure setting.
- The existence of P^* show that $NA(\mathcal{Q}^T)$ implies that (an adaptation of) [Rásonyi and Meireles-Rodrigues, 2018, Assumption 2.1] and thus [Rásonyi and Meireles-Rodrigues, 2018, Theorem 3.7] which shows the existence in the problem of maximisation of expected utility for bounded function defined on the whole real line works under $NA(\mathcal{Q}^T)$.
- One can choose P^* as common probability measure in the quantitative definition of NA.
- Allows to find universally measurable version of κ_t .

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Second Main result					

Proposition

Assume that Assumptions 1. and 2. hold true. Assume furthermore that there exists some dominating measure $\widehat{P} \in Q^T$. Then

• The $NA(\hat{P})$ and the $NA(\mathcal{Q}^T)$ conditions are equivalent.

	The model	No Arbitrage	Examples	Conclusion	Références
		000000000000000000000000000000000000000			
Second Main resul	t				

Proposition

Assume that Assumptions 1. and 2. hold true. Assume furthermore that there exists some dominating measure $\widehat{P} \in Q^T$. Then

- The $NA(\hat{P})$ and the $NA(\mathcal{Q}^T)$ conditions are equivalent.
- One can choose $P^* = \widehat{P}$ in \mathcal{P}^T .

		No Arbitrage	Examples	Conclusion	
		000000000000000000000000000000000000000			
Second Main result					

Proposition

Assume that Assumptions 1. and 2. hold true. Assume furthermore that there exists some dominating measure $\widehat{P} \in Q^T$. Then

- The $NA(\hat{P})$ and the $NA(\mathcal{Q}^T)$ conditions are equivalent.
- One can choose $P^* = \widehat{P}$ in \mathcal{P}^T .

Proposition

Assume that Assumption 2. holds true and that there exists

- some $\widetilde{P} \in \mathcal{Q}^T$
- $\textbf{ o some } 0 \leq \widetilde{t} \leq T-1 \text{ and some } \Omega^{\widetilde{t}}_N \in \mathcal{B}_c(\Omega^{\widetilde{t}}) \text{ such that }$
 - $\widetilde{P}^{\widetilde{t}}(\Omega_N^{\widetilde{t}})>0$
 - $\mathcal{Q}_{\tilde{t}+1}(\omega^{\tilde{t}})$ is not dominated for all $\omega^{\tilde{t}} \in \Omega_N^{\tilde{t}}$.

Then Q^T is not dominated.

The model	No Arbitrage	Examples	Conclusion	Références
00	000000000000000000	●000		

• Suppose that $T \ge 1$, d = 1 and $\Omega_t = \mathbb{R}$ for all $1 \le t \le T$.

The model	No Arbitrage	Examples	Conclusion	Références
00	000000000000000000	0000		

- Suppose that $T \ge 1$, d = 1 and $\Omega_t = \mathbb{R}$ for all $1 \le t \le T$.
- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0,\infty).$

The model	No Arbitrage	Examples	Conclusion	Références
00	000000000000000000000000000000000000000	0000		

- Suppose that $T \ge 1$, d = 1 and $\Omega_t = \mathbb{R}$ for all $1 \le t \le T$.
- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.
- Assumption 1. is verified. Let

$$\mathcal{B}_{t+1}(\omega^t) := \{ p\delta_u + (1-p)\delta_d, \ p_t(\omega^t) \le p \le P_t(\omega^t), \\ u_t(\omega^t) \le u \le U_t(\omega^t), \ d_t(\omega^t) \le d \le D_t(\omega^t) \},$$

The model	No Arbitrage	Examples	Conclusion	Références
00	000000000000000000000000000000000000000	0000		

- Suppose that $T \ge 1$, d = 1 and $\Omega_t = \mathbb{R}$ for all $1 \le t \le T$.
- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.
- Assumption 1. is verified. Let

$$\mathcal{B}_{t+1}(\omega^t) := \{ p\delta_u + (1-p)\delta_d, \ p_t(\omega^t) \le p \le P_t(\omega^t), \\ u_t(\omega^t) \le u \le U_t(\omega^t), \ d_t(\omega^t) \le d \le D_t(\omega^t) \},$$

• where $p_t, P_t, u_t, U_t, d_t, D_t$ are Borel-measurable r.v. s.t.

The model	No Arbitrage	Examples	Conclusion	Références
		0000		

- Suppose that $T \ge 1$, d = 1 and $\Omega_t = \mathbb{R}$ for all $1 \le t \le T$.
- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.
- Assumption 1. is verified. Let

$$\mathcal{B}_{t+1}(\omega^t) := \{ p\delta_u + (1-p)\delta_d, \ p_t(\omega^t) \le p \le P_t(\omega^t), \\ u_t(\omega^t) \le u \le U_t(\omega^t), \ d_t(\omega^t) \le d \le D_t(\omega^t) \},$$

- where $p_t, P_t, u_t, U_t, d_t, D_t$ are Borel-measurable r.v. s.t.
- $p_t(\omega^t), P_t(\omega^t) \in [0,1]$ and $p_t(\omega^t) < 1$, $P_t(\omega^t) > 0$

The model	No Arbitrage	Examples	Conclusion	Références
00	000000000000000000000000000000000000000	0000		

- Suppose that $T \ge 1$, d = 1 and $\Omega_t = \mathbb{R}$ for all $1 \le t \le T$.
- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.
- Assumption 1. is verified. Let

$$\mathcal{B}_{t+1}(\omega^t) := \{ p\delta_u + (1-p)\delta_d, \ p_t(\omega^t) \le p \le P_t(\omega^t), \\ u_t(\omega^t) \le u \le U_t(\omega^t), \ d_t(\omega^t) \le d \le D_t(\omega^t) \},$$

- where $p_t, P_t, u_t, U_t, d_t, D_t$ are Borel-measurable r.v. s.t.
- $p_t(\omega^t), P_t(\omega^t) \in [0,1]$ and $p_t(\omega^t) < 1$, $P_t(\omega^t) > 0$
- $0 < d_t(\omega^t) < 1 < U_t(\omega^t).$

The model	No Arbitrage	Examples	Conclusion	Références
00	000000000000000000000000000000000000000	0000		

- Suppose that $T \ge 1$, d = 1 and $\Omega_t = \mathbb{R}$ for all $1 \le t \le T$.
- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.
- Assumption 1. is verified. Let

$$\mathcal{B}_{t+1}(\omega^t) := \{ p\delta_u + (1-p)\delta_d, \ p_t(\omega^t) \le p \le P_t(\omega^t), \\ u_t(\omega^t) \le u \le U_t(\omega^t), \ d_t(\omega^t) \le d \le D_t(\omega^t) \},$$

- where $p_t, P_t, u_t, U_t, d_t, D_t$ are Borel-measurable r.v. s.t.
- $p_t(\omega^t), P_t(\omega^t) \in [0,1]$ and $p_t(\omega^t) < 1$, $P_t(\omega^t) > 0$
- $0 < d_t(\omega^t) < 1 < U_t(\omega^t).$
- Then

$$\mathcal{Q}_{t+1}(\boldsymbol{\omega}^{t}) := \mathsf{Conv}\left(\left\{Q \in \mathfrak{P}(\Omega_{t+1}), \ Q\left(Y_{t+1} \in \cdot\right) \in \mathcal{B}_{t+1}(\boldsymbol{\omega}^{t})\right\}\right),$$

The model	No Arbitrage	Examples	Conclusion	Références
		0000		

- Suppose that $T \ge 1$, d = 1 and $\Omega_t = \mathbb{R}$ for all $1 \le t \le T$.
- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.
- Assumption 1. is verified. Let

$$\mathcal{B}_{t+1}(\omega^t) := \{ p\delta_u + (1-p)\delta_d, \ p_t(\omega^t) \le p \le P_t(\omega^t), \\ u_t(\omega^t) \le u \le U_t(\omega^t), \ d_t(\omega^t) \le d \le D_t(\omega^t) \},$$

- where $p_t, P_t, u_t, U_t, d_t, D_t$ are Borel-measurable r.v. s.t.
- $p_t(\omega^t), P_t(\omega^t) \in [0,1]$ and $p_t(\omega^t) < 1$, $P_t(\omega^t) > 0$
- $0 < d_t(\omega^t) < 1 < U_t(\omega^t).$
- Then

$$\mathcal{Q}_{t+1}(\boldsymbol{\omega}^{t}) := \mathsf{Conv}\left(\left\{Q \in \mathfrak{P}(\Omega_{t+1}), \ Q\left(Y_{t+1} \in \cdot\right) \in \mathcal{B}_{t+1}(\boldsymbol{\omega}^{t})\right\}\right),$$

• Usual binomial model corresponds : $p_t = P_t = p$, $u_t = U_t = u$ and $d_t = D_T = d$ where 0 , <math>d < 1 < u.

The model	No Arbitrage	Examples	Conclusion	Références
		0000		

- Suppose that $T \ge 1$, d = 1 and $\Omega_t = \mathbb{R}$ for all $1 \le t \le T$.
- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.
- Assumption 1. is verified. Let

$$\mathcal{B}_{t+1}(\omega^t) := \{ p\delta_u + (1-p)\delta_d, \ p_t(\omega^t) \le p \le P_t(\omega^t), \\ u_t(\omega^t) \le u \le U_t(\omega^t), \ d_t(\omega^t) \le d \le D_t(\omega^t) \},$$

- where $p_t, P_t, u_t, U_t, d_t, D_t$ are Borel-measurable r.v. s.t.
- $p_t(\omega^t), P_t(\omega^t) \in [0,1]$ and $p_t(\omega^t) < 1$, $P_t(\omega^t) > 0$
- $0 < d_t(\omega^t) < 1 < U_t(\omega^t).$
- Then

$$\mathcal{Q}_{t+1}(\boldsymbol{\omega}^{t}) := \mathsf{Conv}\left(\left\{Q \in \mathfrak{P}(\Omega_{t+1}), \ Q\left(Y_{t+1} \in \cdot\right) \in \mathcal{B}_{t+1}(\boldsymbol{\omega}^{t})\right\}\right),$$

- Usual binomial model corresponds : $p_t = P_t = p$, $u_t = U_t = u$ and $d_t = D_T = d$ where 0 , <math>d < 1 < u.
- Assumption 2. holds true.

The model	No Arbitrage	Examples	Conclusion	Références
00	000000000000000000	0000		

•
$$S_{t+1} - S_t = S_t(Y_{t+1} - 1)$$
 and $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$

ı The mo	del No Arbitrage	Example	es Conclusion	Références
00	000000000	0000 00000		

•
$$S_{t+1} - S_t = S_t(Y_{t+1} - 1)$$
 and $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$

• Conv
$$(D^{t+1})(\omega^t) = [S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(U_t(\omega^t) - 1)].$$

Aim	The model	No Arbitrage	Examples	Conclusion	Références
	00	000000000000000000000000000000000000000	0000		

•
$$S_{t+1} - S_t = S_t(Y_{t+1} - 1)$$
 and $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$

• Conv
$$(D^{t+1})(\omega^t) = [S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(U_t(\omega^t) - 1)].$$

• $NA(\mathcal{Q}^T)$ holds true : $0 \in \operatorname{Ri}\left(\operatorname{Conv}\left(D^{t+1}\right)\right)(\omega^t)$ for all $\omega^t \in \Omega^t$.

Aim	The model	No Arbitrage	Examples	Conclusion	Références
			0000		

•
$$S_{t+1} - S_t = S_t(Y_{t+1} - 1)$$
 and $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$

• Conv
$$(D^{t+1})(\omega^t) = [S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(U_t(\omega^t) - 1)].$$

- $NA(\mathcal{Q}^T)$ holds true : $0 \in \mathsf{Ri}(\mathsf{Conv}(D^{t+1}))(\omega^t)$ for all $\omega^t \in \Omega^t$.
- If for instance $u_t(\omega^t) < 1$ for all ω^t , $\exists a_t(\omega^t) \in [u_t(\omega^t), 1)$. Let for $\pi_t(\omega^t) \in [p_t(\omega^t), P_t(\omega^t)]$

$$\begin{aligned} q_{t+1}(\Delta S_{t+1} \in \cdot, \omega^t) &= \pi_t(\omega^t) \delta_{a_t(\omega^t)}(\cdot) + \left(1 - \pi_t(\omega^t)\right) \delta_{d_t(\omega^t)}(\cdot) \\ Q &= Q_1 \otimes \dots \otimes q_t \in \mathcal{Q}^T \\ \operatorname{Conv}\left(D_Q^{t+1}\right)(\omega^t) &= \left[S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(a_t(\omega^t) - 1)\right] \end{aligned}$$

Aim	The model	No Arbitrage	Examples	Conclusion	Références
			0000		

•
$$S_{t+1} - S_t = S_t(Y_{t+1} - 1)$$
 and $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$

• Conv
$$(D^{t+1})(\omega^t) = [S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(U_t(\omega^t) - 1)].$$

- $NA(\mathcal{Q}^T)$ holds true : $0 \in \mathsf{Ri}(\mathsf{Conv}(D^{t+1}))(\omega^t)$ for all $\omega^t \in \Omega^t$.
- If for instance $u_t(\omega^t) < 1$ for all ω^t , $\exists a_t(\omega^t) \in [u_t(\omega^t), 1)$. Let for $\pi_t(\omega^t) \in [p_t(\omega^t), P_t(\omega^t)]$

$$\begin{aligned} q_{t+1}(\Delta S_{t+1} \in \cdot, \omega^t) &= \pi_t(\omega^t) \delta_{a_t(\omega^t)}(\cdot) + \left(1 - \pi_t(\omega^t)\right) \delta_{d_t(\omega^t)}(\cdot) \\ Q &= Q_1 \otimes \dots \otimes q_t \in \mathcal{Q}^T \\ \operatorname{Conv}\left(D_Q^{t+1}\right)(\omega^t) &= \left[S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(a_t(\omega^t) - 1)\right] \end{aligned}$$

• $0 \notin \operatorname{Ri}\left(\operatorname{Conv}\left(D_Q^{t+1}\right)\right)(\omega^t)$ for all $\omega^t \in \Omega^t$ and both the NA(Q) and $sNA(Q^T)$ conditions fail.

		No Arbitrage	Examples	Conclusion	
0	00	000000000000000000	0000	0	

$$\frac{\varepsilon_t(\omega^t)}{2} = \beta_t(\omega^t) = \frac{S_t(\omega^t)}{N} \min\left(\frac{U_t(\omega^t) - 1}{2}, \frac{1 - d_t(\omega^t)}{2}\right) > 0,$$

$$\kappa_t(\omega^t) = \frac{1}{M} \min\left(\frac{p_t(\omega^t) + P_t(\omega^t)}{2}, 1 - \frac{p_t(\omega^t) + P_t(\omega^t)}{2}\right) > 0.$$

		No Arbitrage	Examples	Conclusion	
0	00	000000000000000000	0000	0	

$$\frac{\varepsilon_t(\omega^t)}{2} = \beta_t(\omega^t) = \frac{S_t(\omega^t)}{N} \min\left(\frac{U_t(\omega^t) - 1}{2}, \frac{1 - d_t(\omega^t)}{2}\right) > 0,$$

$$\kappa_t(\omega^t) = \frac{1}{M} \min\left(\frac{p_t(\omega^t) + P_t(\omega^t)}{2}, 1 - \frac{p_t(\omega^t) + P_t(\omega^t)}{2}\right) > 0.$$

• N > 1 and $M \ge 1$ are fixed and allows to get sharper bounds.

		No Arbitrage	Examples	Conclusion	
0	00	000000000000000000	0000	0	

$$\frac{\varepsilon_t(\omega^t)}{2} = \beta_t(\omega^t) = \frac{S_t(\omega^t)}{N} \min\left(\frac{U_t(\omega^t) - 1}{2}, \frac{1 - d_t(\omega^t)}{2}\right) > 0,$$
$$\kappa_t(\omega^t) = \frac{1}{M} \min\left(\frac{p_t(\omega^t) + P_t(\omega^t)}{2}, 1 - \frac{p_t(\omega^t) + P_t(\omega^t)}{2}\right) > 0.$$

• N > 1 and $M \ge 1$ are fixed and allows to get sharper bounds.

• The (Borel) measurability of ε_t , β_t and κ_t are clear.

		No Arbitrage	Examples	Conclusion	
0	00	000000000000000000	0000	0	

$$\frac{\varepsilon_t(\omega^t)}{2} = \beta_t(\omega^t) = \frac{S_t(\omega^t)}{N} \min\left(\frac{U_t(\omega^t) - 1}{2}, \frac{1 - d_t(\omega^t)}{2}\right) > 0,$$
$$\kappa_t(\omega^t) = \frac{1}{M} \min\left(\frac{p_t(\omega^t) + P_t(\omega^t)}{2}, 1 - \frac{p_t(\omega^t) + P_t(\omega^t)}{2}\right) > 0.$$

• N > 1 and $M \ge 1$ are fixed and allows to get sharper bounds.

- The (Borel) measurability of ε_t, β_t and κ_t are clear.
- Let $\bar{\pi}_t(\omega^t):=rac{p_t(\omega^t)+P_t(\omega^t)}{2}\in(0,1)$ and a^\pm,b^\pm be chosen such that

$$\begin{aligned} a_t^+(\omega^t) &:= U_t(\omega^t) > 1, \quad b_t^+(\omega^t) := \min\left(D_t(\omega^t), \frac{d_t(\omega^t) + 1}{2}\right) < 1, \\ a_t^-(\omega^t) &:= \max\left(u_t(\omega^t), \frac{U_t(\omega^t) + 1}{2}\right) > 1, \quad b_t^-(\omega^t) := d_t(\omega^t) < 1, \\ r_{t+1}^{\pm}(\cdot, \omega^t) &:= \bar{\pi}_t(\omega^t) \delta_{a_t^{\pm}(\omega^t)}(\cdot) + (1 - \bar{\pi}_t(\omega^t)) \delta_{b_t^{\pm}(\omega^t)}(\cdot) \in \mathcal{B}_{t+1}(\omega^t), \\ r_{t+1}^*(\cdot, \omega^t) &:= \frac{1}{2} \left(r_{t+1}^+(\cdot, \omega^t) + r_{t+1}^-(\cdot, \omega^t)\right) \in \mathcal{B}_{t+1}(\omega^t), \\ p_{t+1}^*(Y_{t+1} \in \cdot, \omega^t) &:= r_{t+1}^*(\cdot, \omega^t) \in \mathcal{Q}_{t+1}(\omega^t) \end{aligned}$$

		No Arbitrage	Examples	Conclusion	
0	00	000000000000000000	0000	0	

$$\frac{\varepsilon_t(\omega^t)}{2} = \beta_t(\omega^t) = \frac{S_t(\omega^t)}{N} \min\left(\frac{U_t(\omega^t) - 1}{2}, \frac{1 - d_t(\omega^t)}{2}\right) > 0,$$
$$\kappa_t(\omega^t) = \frac{1}{M} \min\left(\frac{p_t(\omega^t) + P_t(\omega^t)}{2}, 1 - \frac{p_t(\omega^t) + P_t(\omega^t)}{2}\right) > 0.$$

• N > 1 and $M \ge 1$ are fixed and allows to get sharper bounds.

- The (Borel) measurability of ε_t, β_t and κ_t are clear.
- Let $\bar{\pi}_t(\omega^t):=rac{p_t(\omega^t)+P_t(\omega^t)}{2}\in(0,1)$ and a^\pm,b^\pm be chosen such that

$$\begin{aligned} a_t^+(\omega^t) &:= U_t(\omega^t) > 1, \quad b_t^+(\omega^t) := \min\left(D_t(\omega^t), \frac{d_t(\omega^t) + 1}{2}\right) < 1, \\ a_t^-(\omega^t) &:= \max\left(u_t(\omega^t), \frac{U_t(\omega^t) + 1}{2}\right) > 1, \quad b_t^-(\omega^t) := d_t(\omega^t) < 1, \\ r_{t+1}^{\pm}(\cdot, \omega^t) &:= \bar{\pi}_t(\omega^t)\delta_{a_t^{\pm}(\omega^t)}(\cdot) + (1 - \bar{\pi}_t(\omega^t))\delta_{b_t^{\pm}(\omega^t)}(\cdot) \in \mathcal{B}_{t+1}(\omega^t), \\ r_{t+1}^*(\cdot, \omega^t) &:= \frac{1}{2}\left(r_{t+1}^+(\cdot, \omega^t) + r_{t+1}^-(\cdot, \omega^t)\right) \in \mathcal{B}_{t+1}(\omega^t), \\ p_{t+1}^*(Y_{t+1} \in \cdot, \omega^t) &:= r_{t+1}^*(\cdot, \omega^t) \in \mathcal{Q}_{t+1}(\omega^t) \\ p_{t+1}^*\left(\pm \Delta S_{t+1}(\omega^t, \cdot) < -\beta_t(\omega^t), \omega^t\right) \ge \kappa_t(\omega^t). \end{aligned}$$

The model	No Arbitrage	Examples	Conclusion	Références
00	000000000000000000	0000		

• Choose

The model	No Arbitrage	Examples	Conclusion	Références
00	000000000000000000	0000		

- Choose
- $P^* := P_0^* \otimes \cdots \otimes p_{t+1}^* \otimes \cdots p_T^* \in \mathcal{Q}^T$. $0 \in \mathsf{Ri}\left(\mathsf{Conv}(D_{P^*}^{t+1})\right)(\omega^t)$ and that $\mathsf{Aff}\left(D_{P^*}^{t+1}\right)(\omega^t) = \mathsf{Aff}\left(D^{t+1}\right)(\omega^t)$ for all ω^t .

The model	No Arbitrage	Examples	Conclusion	Références
00	000000000000000000	0000		

- Choose
- $P^* := P_0^* \otimes \cdots \otimes p_{t+1}^* \otimes \cdots p_T^* \in \mathcal{Q}^T$. $0 \in \mathsf{Ri}\left(\mathsf{Conv}(D_{P^*}^{t+1})\right)(\omega^t)$ and that $\mathsf{Aff}\left(D_{P^*}^{t+1}\right)(\omega^t) = \mathsf{Aff}\left(D^{t+1}\right)(\omega^t)$ for all ω^t .
- Note that P^* is not unique.

The model	No Arbitrage	Examples	Conclusion	Références
		0000		

Choose

- $P^* := P_0^* \otimes \cdots \otimes p_{t+1}^* \otimes \cdots p_T^* \in \mathcal{Q}^T$. $0 \in \mathsf{Ri}\left(\mathsf{Conv}(D_{P^*}^{t+1})\right)(\omega^t)$ and that $\mathsf{Aff}\left(D_{P^*}^{t+1}\right)(\omega^t) = \mathsf{Aff}\left(D^{t+1}\right)(\omega^t)$ for all ω^t .
- Note that P^* is not unique.
- Finally, if for some $0 \le t \le T 1$, $\omega^t \in \Omega^t$, $u_t(\omega^t) < U_t(\omega^t)$ or $d_t(\omega^t) < D_t(\omega^t)$ the set $\mathcal{Q}_{t+1}(\omega^t)$ is non-dominated and \mathcal{Q}^T is also non-dominated.

	No Arbitrage	Examples	Conclusion	
00	000000000000000000000000000000000000000	0000		

Choose

- $P^* := P_0^* \otimes \cdots \otimes p_{t+1}^* \otimes \cdots p_T^* \in \mathcal{Q}^T$. $0 \in \operatorname{Ri}\left(\operatorname{Conv}(D_{P^*}^{t+1})\right)(\omega^t)$ and that $\operatorname{Aff}\left(D_{P^*}^{t+1}\right)(\omega^t) = \operatorname{Aff}\left(D^{t+1}\right)(\omega^t)$ for all ω^t .
- Note that P^* is not unique.
- Finally, if for some $0 \le t \le T 1$, $\omega^t \in \Omega^t$, $u_t(\omega^t) < U_t(\omega^t)$ or $d_t(\omega^t) < D_t(\omega^t)$ the set $\mathcal{Q}_{t+1}(\omega^t)$ is non-dominated and \mathcal{Q}^T is also non-dominated.
- Indeed, if not, any dominating measure would have an uncountable number of atoms.

	The model 00	No Arbitrage 000000000000000000000000000000000000	Examples 0000	Conclusion •	
Cond	clusion				

• We have understood in details the quasi-sure no arbitrage condition and studied the link with different types of robust no-arbitrage conditions (local or global) in discrete time.

	The model 00	No Arbitrage 000000000000000000000000000000000000	Examples 0000	Conclusion •	
Cond	clusion				

- We have understood in details the quasi-sure no arbitrage condition and studied the link with different types of robust no-arbitrage conditions (local or global) in discrete time.
- Our main result gives the existence of a set of priors having the same polar sets than the original one and such each priors is arbitrage free.

	The model 00	No Arbitrage 000000000000000000000000000000000000	Examples 0000	Conclusion •	
Conc	lusion				

- We have understood in details the quasi-sure no arbitrage condition and studied the link with different types of robust no-arbitrage conditions (local or global) in discrete time.
- Our main result gives the existence of a set of priors having the same polar sets than the original one and such each priors is arbitrage free.
- We give concrete examples where all the quantities appearing in the different definitions and characterizations of NA are explicit.

	The model	No Arbitrage	Examples	Conclusion	Références
0	00	000000000000000000	0000	0	

- D. Bartl, P. Cheridito, and M. Kupper. Robust expected utility maximization with medial limits. *Journal of Mathematical Analysis and Applications*, 471(1-2) :752–775, 2019.
- S. Biagini, B. Bouchard, C. Kardaras, and M. Nutz. Robust fundamental theorem for continuous processes. *Mathematical Finance*, 2015.
- R. Blanchard and L. Carassus. Multiple-priors investment in discrete time for unbounded utility function. *Annals of Applied Probability*, 88(2) : 241–281, 2018.
- B. Bouchard and M. Nutz. Arbitrage and duality in nondominated discrete-time models. *Annals of Applied Probability*, 25(2) :823–859, 2015.
- M.H.A. Davis and D. Hobson. The range of traded option prices. *Mathematical Finance*, 17(1) :1–14, 2007.
- J. Jacod and A. N. Shiryaev. Local martingales and the fundamental asset pricing theorems in the discrete-time case. *Finance Stochastic*, 2 :259–273, 1998.
- J. Oblój and J. Wiesel. A unified framework for robust modelling of financial markets in discrete time. *arxiv*, 2018.
- M. Rásonyi and A. Meireles-Rodrigues. On utility maximisation under model uncertainty in discrete-time markets. *arxiv*, 2018.
| The model | No Arbitrage | Examples | Conclusion | Références |
|-----------|--------------|----------|------------|------------|
| | | | | |
| | | | | |

M. Rásonyi and L. Stettner. On the utility maximization problem in discrete-time financial market models. *Annals of Applied Probability*, 15 :1367–1395, 2005.