No-arbitrage with multiple-priors in discrete time

Model Uncertainty in Risk Management, 31/01/2020

Laurence Carassus, Research Center, L. de Vinci Pôle universitaire and URCA. Joint work with Romain Blanchard.
Aim of the paper

Investors trading in a discrete-time, multi-period and multiple-prior financial market.

New characterisation of the condition of quasi-sure no-arbitrage of [Bouchard and Nutz, 2015] which has become a standard assumption.
Aim of the paper

Investors trading in a discrete-time, multi-period and multiple-prior financial market.

New characterisation of the condition of quasi-sure no-arbitrage of [Bouchard and Nutz, 2015] which has become a standard assumption.

- Better economical understanding of this assumption.
Aim of the paper

Investors trading in a discrete-time, multi-period and multiple-prior financial market.
New characterisation of the condition of quasi-sure no-arbitrage of [Bouchard and Nutz, 2015] which has become a standard assumption.

- Better economical understanding of this assumption.
- Give the equivalence with several alternative notions of no-arbitrage previously used for utility maximisation.
Investors trading in a discrete-time, multi-period and multiple-prior financial market.
New characterisation of the condition of quasi-sure no-arbitrage of [Bouchard and Nutz, 2015] which has become a standard assumption.

- Better economical understanding of this assumption.
- Give the equivalence with several alternative notions of no-arbitrage previously used for utility maximisation.
- Simple proof for FTAP.
Investors trading in a discrete-time, multi-period and multiple-prior financial market.

New characterisation of the condition of quasi-sure no-arbitrage of [Bouchard and Nutz, 2015] which has become a standard assumption.

- Better economical understanding of this assumption.
- Give the equivalence with several alternative notions of no-arbitrage previously used for utility maximisation.
- Simple proof for FTAP.
- New possibility for utility maximisation.
Aim of the paper

Investors trading in a discrete-time, multi-period and multiple-prior financial market.
New characterisation of the condition of quasi-sure no-arbitrage of [Bouchard and Nutz, 2015] which has become a standard assumption.

- Better economical understanding of this assumption.
- Give the equivalence with several alternative notions of no-arbitrage previously used for utility maximisation.
- Simple proof for FTAP.
- New possibility for utility maximisation.
- Revisit the so-called geometric and quantitative no-arbitrage conditions.
Aim of the paper

Investors trading in a discrete-time, multi-period and multiple-prior financial market.

New characterisation of the condition of quasi-sure no-arbitrage of [Bouchard and Nutz, 2015] which has become a standard assumption.

- Better economical understanding of this assumption.
- Give the equivalence with several alternative notions of no-arbitrage previously used for utility maximisation.
- Simple proof for FTAP.
- New possibility for utility maximisation.
- Revisit the so-called geometric and quantitative no-arbitrage conditions.
- Explicit two important examples where all these concepts are illustrated.
Framework and notations

Set of priors (similar to [Bouchard and Nutz, 2015])

- Sequence $(\Omega_t)_{1 \leq t \leq T}$ of Polish spaces. We denote

$$\omega^t = (\omega_1, \ldots, \omega_t) \in \Omega^t := \Omega_1 \times \cdots \times \Omega_t.$$
Framework and notations

Set of priors (similar to [Bouchard and Nutz, 2015])

- Sequence $(\Omega_t)_{1 \leq t \leq T}$ of Polish spaces. We denote

\[\omega^t = (\omega_1, \ldots, \omega_t) \in \Omega^t := \Omega_1 \times \cdots \times \Omega_t. \]

- **Assumption 1**: the one period set of priors $Q_{t+1} : \omega^t \in \Omega^t \mapsto \mathcal{P}(\Omega_{t+1})$ is a non-empty and convex valued random set s.t.

\[\text{Graph}(Q_{t+1}) = \left\{ (\omega^t, P) \in \Omega^t \times \mathcal{P}(\Omega_{t+1}), \ P \in Q_{t+1}(\omega^t) \right\} \]

is an analytic set (continuous image of a Polish space).
Framework and notations

Set of priors (similar to [Bouchard and Nutz, 2015])

- Sequence $\left(\Omega_t\right)_{1 \leq t \leq T}$ of Polish spaces. We denote
 \[
 \omega^t = (\omega_1, \ldots, \omega_t) \in \Omega^t := \Omega_1 \times \cdots \times \Omega_t.
 \]

- **Assumption 1**: the one period set of priors $Q_{t+1}: \omega^t \in \Omega^t \mapsto \mathcal{P}(\Omega_{t+1})$ is a non-empty and convex valued random set s.t.
 \[
 \text{Graph}(Q_{t+1}) = \{(\omega^t, P) \in \Omega^t \times \mathcal{P}(\Omega_{t+1}), P \in Q_{t+1}(\omega^t)\}
 \]
 is an analytic set (continuous image of a Polish space).

- Jankov-von Neumann Theorem allows to construct the set of all possible priors Q^T.
 \[
 Q^T := \{Q_1 \otimes q_2 \otimes \cdots \otimes q_T, Q_1 \in Q_1, q_{s+1} \in SK_{s+1}, q_{s+1}(:, \omega^s) \in Q_{s+1}(\omega^s) \forall \omega^s \forall 1 \leq s \leq T - 1 \},
 \]
 where SK_{t+1} is the set of $B_c(\Omega^t) := \bigcap_{P \in \mathcal{P}(\Omega^t)} B_P(\Omega^t)$-meas. stochastic kernel on Ω_{t+1} given Ω^t.

The traded assets and strategies

- **Traded assets**: \(S := \{S_t, \ 0 \leq t \leq T\} \), \(d \)-dimensional process.
The traded assets and strategies

- Traded assets: \(S := \{ S_t, \, 0 \leq t \leq T \} \), \(d \)-dimensional process.
- **Assumption 2**: \(S \) is Borel-adapted.
The traded assets and strategies

- Traded assets: \(S := \{S_t, \ 0 \leq t \leq T\} \), \(d \)-dimensional process.
- **Assumption 2**: \(S \) is Borel-adapted.
- Trading strategies: \(\phi := \{\phi_t, \ 1 \leq t \leq T\} \in \Phi \), universally-predictable \(d \)-dimensional process.
The traded assets and strategies

- **Traded assets**: $S := \{S_t, \ 0 \leq t \leq T\}$, d-dimensional process.
- **Assumption 2**: S is Borel-adapted.
- **Trading strategies**: $\phi := \{\phi_t, \ 1 \leq t \leq T\} \in \Phi$, universally-predictable d-dimensional process.
- **Trading is self-financing. Riskless asset’s price is constant 1.**

$$V_t^x,\phi = x + \sum_{s=1}^{t} \phi_s \Delta S_s.$$
No-arbitrage conditions

Monoprior NA(P)

\[NA(P) : \ V_T^{0,\phi} \geq 0 \ \text{P-a.s. for some } \phi \in \Phi \ \Rightarrow \ V_T^{0,\phi} = 0 \ \text{P-a.s.} \]
No-arbitrage conditions

Monoprior NA(P)

\[NA(P) : V_{T}^{0,\phi} \geq 0 \text{ } P\text{-a.s. for some } \phi \in \Phi \Rightarrow V_{T}^{0,\phi} = 0 \text{ } P\text{-a.s.} \]

Robust NA

\[NA(Q^{T}) : V_{T}^{0,\phi} \geq 0 \text{ } Q^{T}\text{-q.s. for some } \phi \in \Phi \Rightarrow V_{T}^{0,\phi} = 0 \text{ } Q^{T}\text{-q.s.} \]

See Bouchard and Nutz [2015]

\(N \subset \Omega^{T} \) is called a \(Q^{T}\)-polar set if \(\forall P \in Q^{T}, \exists A_{P} \in \mathcal{B}(X) \) such that \(P(A_{P}) = 0 \) and \(N \subset A_{P} \). Holds true \(Q^{T}\)-q.s. : outside a \(Q^{T}\)-polar set. \(Q^{T}\)-full measure set : complement of a \(Q^{T}\)-polar set.
No-arbitrage conditions

- Is $NA(Q^T)$ the “right” condition?
No-arbitrage conditions

- Is $NA(Q^T)$ the “right” condition?
- Under this condition it is not even clear if there exists a model $P \in Q^T$ satisfying $NA(P)$. We will prove that this is in fact possible.
No-arbitrage conditions

- Is $\text{NA}(Q^T)$ the “right” condition?
- Under this condition it is not even clear if there exists a model $P \in Q^T$ satisfying $\text{NA}(P)$. We will prove that this is in fact possible.
- Nevertheless, Q^T might still contain some models that are not arbitrage free.
No-arbitrage conditions

- Is $NA(Q^T)$ the “right” condition?
- Under this condition it is not even clear if there exists a model $P \in Q^T$ satisfying $NA(P)$. We will prove that this is in fact possible.
- Nevertheless, Q^T might still contain some models that are not arbitrage free.
- An agent may not be able to delta-hedge a simple vanilla option using different levels of volatility in an arbitrage-free way.
No-arbitrage conditions

Instead of $NA(Q^T)$ one may assume that every model is arbitrage free.
No-arbitrage conditions

Instead of $NA(Q^T)$ one may assume that every model is arbitrage free.

Strong NA

\[sNA(Q^T) : NA(P), \forall P \in Q^T. \]
Instead of $\text{NA}(Q^{T})$ one may assume that every model is arbitrage free.

Strong NA

$$\text{sNA}(Q^{T}) : \text{NA}(P), \forall P \in Q^{T}.$$

- $\text{sNA}(Q^{T})$ is useful to obtain tractable theorems for expected utility maximisation for unbounded function, see [Blanchard and Carassus, 2018] and [Rásonyi and Meireles-Rodrigues, 2018].
No-arbitrage conditions

Instead of $NA(Q^T)$ one may assume that every model is arbitrage free.

Strong NA

$sNA(Q^T) : NA(P), \forall P \in Q^T$.

- $sNA(Q^T)$ is useful to obtain tractable theorems for expected utility maximisation for unbounded function, see [Blanchard and Carassus, 2018] and [Rásonyi and Meireles-Rodrigues, 2018].

- This definition seems also relevant in a continuous time setting for studying the no-arbitrage characterisation, see [Biagini et al., 2015].
No-arbitrage characterisations

Weak NA

\[wNA(Q^T) : \exists P \in Q^T \text{ s.t. } NA(P). \]
No-arbitrage characterisations

Weak NA

\[wNA(Q^T) : \exists P \in Q^T \text{ s.t. } NA(P). \]

The contraposition of the \(wNA(Q^T)\) condition is that for all models \(P \in Q^T\), there exists a strategy \(\phi_P\) such that \(V_T^{0,\phi_P} \geq 0\) \(P\)-a.s. and \(P(V_T^{0,\phi_P} > 0) > 0\).

A concrete example of a such model-dependent arbitrage is given in [Davis and Hobson, 2007].
Figure – Simple relations between the no-arbitrage definitions.
Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $\mathcal{P}^T \subset Q^T$ s.t.
Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $\mathcal{P}^T \subset Q^T$ s.t.
 - \mathcal{P}^T and Q^T have the same polar-sets
Assume that Assumptions 1. and 2. hold true. TFAE

1. $NA(Q^T)$ holds true.
2. There exists some $P^T \subset Q^T$ s.t.
 1. P^T and Q^T have the same polar-sets
 2. $sNA(P^T)$ holds true i.e. $NA(P)$ for all $P \in P^T$.

Therefore, the set P^T is defined recursively as follows:

$P_1^T := \{ \lambda P_*^T + (1 - \lambda) P, 0 < \lambda \leq 1, P \in Q_1^T \}$,

$P_{t+1}^T := \{ P_t^T \otimes (\lambda p_*^{t+1} + (1 - \lambda) q_{t+1}^T), 0 < \lambda \leq 1, P_t \in P_t^T, q_{t+1}^T(\omega) \in Q_{t+1}^T(\omega) \}$.

Assume that Assumptions 1. and 2. hold true. TFAE

1. $NA(Q^T)$ holds true.
2. There exists some $\mathcal{P}^T \subset Q^T$ s.t.
 - \mathcal{P}^T and Q^T have the same polar-sets
 - $sNA(\mathcal{P}^T)$ holds true i.e. $NA(P)$ for all $P \in \mathcal{P}^T$.

Let P^* as in Theorem 11 below with the fix disintegration $P^* := P_1^* \otimes p_2^* \otimes \cdots \otimes p_T^*$. The set \mathcal{P}^T is defined recursively as follows:

$$\mathcal{P}^1 := \left\{ \lambda P_1^* + (1 - \lambda)P, \; 0 < \lambda \leq 1, \; P \in Q^1 \right\},$$
$$\mathcal{P}^{t+1} := \left\{ P_t \otimes (\lambda p_{t+1}^* + (1 - \lambda)q_{t+1}), \; 0 < \lambda \leq 1, \right\}$$

$$P_t \in \mathcal{P}^t, \; q_{t+1}(\cdot, \omega^t) \in Q_{t+1}(\omega^t) \; \forall \omega^t \in \Omega^t.$$
Applications

Equivalence between the $NA(Q^T)$ condition and the no-arbitrage condition introduced by [Bartl et al., 2019] which studies the problem of robust maximisation of expected utility using medial limits.
Applications

Equivalence between the $NA(Q^T)$ condition and the no-arbitrage condition introduced by [Bartl et al., 2019] which studies the problem of robust maximisation of expected utility using medial limits.

Corollary

Assume that Assumptions 1. and 2. hold true. The following conditions are equivalent

- The $NA(Q^T)$ condition holds true.
- For all $Q \in Q^T$, there exists some $P \in \mathcal{P}^T$ such that $Q \ll P$ and such that $NA(P)$ holds true.
- For all $Q \in Q^T$, there exists some $P \in Q^T$ such that $Q \ll P$ and such that $NA(P)$ holds true.
Applications

Robust FTAP of [Bouchard and Nutz, 2015].

\[\mathcal{R}^T := \{ P \in \mathcal{P}(\Omega^T), \exists Q' \in \mathcal{Q}^T, P \ll Q' \text{ and } P \text{ is a martingale measure} \}. \]

\[\mathcal{K}^T := \{ P \in \mathcal{P}(\Omega^T), \exists Q' \in \mathcal{P}^T, P \sim Q' \text{ and } P \text{ is a martingale measure} \}. \]
Applications

Robust FTAP of [Bouchard and Nutz, 2015].

\[\mathcal{R}^{T} := \{ P \in \mathcal{P}(\Omega^{T}), \exists Q' \in Q^{T}, P \ll Q' \text{ and } P \text{ is a martingale measure} \}. \]

\[\mathcal{K}^{T} := \{ P \in \mathcal{P}(\Omega^{T}), \exists Q' \in \mathcal{P}^{T}, P \sim Q' \text{ and } P \text{ is a martingale measure} \}. \]

Corollary

Assume that Assumptions 1. and 2. hold true. The following conditions are equivalent

- The NA\((Q^{T})\) condition holds true.
- For all \(Q \in Q^{T}\), there exists some \(P \in \mathcal{K}^{T}\) such that \(Q \ll P\).
- For all \(Q \in Q^{T}\), there exists some \(P \in \mathcal{R}^{T}\) such that \(Q \ll P\).
Random Utility

\[U : \Omega^T \times \mathbb{R} \rightarrow \mathbb{R} \cup \{-\infty\} \text{ such that} \]

- for every \(x \in \mathbb{R} \), \(U(\cdot, x) : \Omega^T \rightarrow \mathbb{R} \cup \{\pm\infty\} \) is \(\mathcal{B}(\Omega^T) \)-measurable,
- for all \(\omega^T \in \Omega^T \), \(U(\omega^T, \cdot) : \mathbb{R} \rightarrow \mathbb{R} \cup \{\pm\infty\} \) is non-decreasing and concave on \((0, \infty)\)
- \(U(\cdot, x) = -\infty \), for all \(x < 0 \).
Applications

Random Utility

$U : \Omega^T \times \mathbb{R} \rightarrow \mathbb{R} \cup \{-\infty\}$ such that

- for every $x \in \mathbb{R}$, $U(\cdot, x) : \Omega^T \rightarrow \mathbb{R} \cup \{\pm \infty\}$ is $\mathcal{B}(\Omega^T)$-measurable,
- for all $\omega^T \in \Omega^T$, $U(\omega^T, \cdot) : \mathbb{R} \rightarrow \mathbb{R} \cup \{\pm \infty\}$ is non-decreasing and concave on $(0, \infty)$
- $U(\cdot, x) = -\infty$, for all $x < 0$.

Robust portfolio problem with initial wealth x

$u(x) := \sup_{\phi \in \Phi(x, U, Q^T)} \inf_{P \in Q^T} E_P U(\cdot, V^x_T, \phi(\cdot))$. \hspace{1cm} (1)

where $\Phi(x, U, Q^T)$ is the set of all strategies, s.t $V^x_T, \phi(\cdot) \geq 0$ Q^T-q.s. and $E_P U^+(\cdot, V^x_T, \phi(\cdot)) < \infty$ or $E_P U^-(\cdot, V^x_T, \phi(\cdot)) < \infty$ for all $P \in Q^T$.
Applications

Assumption 3: We have that $U^+(\cdot, 1), U^-(\cdot, \frac{1}{4}) \in \mathcal{W}_T$ and $\Delta S_t, 1/\alpha_t^P \in \mathcal{W}_t$ for all $1 \leq t \leq T$ and $P \in \mathcal{P}^t$, where

$$\mathcal{W}_t := \bigcap_{r > 0} \left\{ X : \Omega^t \to \mathbb{R} \cup \{\pm \infty\}, \mathcal{B}(\Omega^t)\text{-measurable}, \sup_{P \in \mathcal{Q}^t} E_P |X|^r < \infty \right\}.$$
Assumption 3: We have that $U^+(\cdot, 1), U^-(\cdot, \frac{1}{4}) \in \mathcal{W}_T$ and $\Delta S_t, 1/\alpha_t^P \in \mathcal{W}_t$ for all $1 \leq t \leq T$ and $P \in \mathcal{P}^t$, where

$$\mathcal{W}_t := \bigcap_{r > 0} \left\{ X : \Omega^t \to \mathbb{R} \cup \{\pm \infty\}, \mathcal{B}(\Omega^t)\text{-measurable}, \sup_{P \in \mathcal{Q}^t} E_P |X|^r < \infty \right\}. $$

Corollary

Assume that the $\text{NA}(Q^T)$ condition and Assumptions 1. and 2. hold true. Furthermore, assume that U is either bounded from above or that Assumption 3. holds true. Then for all $x \geq 0$.

$$u(x) = u^P(x) := \sup_{\phi \in \Phi(x, U, \mathcal{P}^T)} \inf_{P \in \mathcal{P}^T} E_P U(\cdot, V_T^x, \phi(\cdot)).$$
Quantitative and geometric characterisation

Local NA

First part of [Bouchard and Nutz, 2015, Theorem 4.5]

Theorem

Assume that Assumptions 1 and 2 hold true. Then the following statements are equivalent:

1. The $\text{NA}(Q^T)$ condition holds true.
2. For all $0 \leq t \leq T - 1$, there exists a Q^t-full measure set $\Omega_{NA}^t \in \mathcal{B}_c(\Omega^t)$ such that for all $\omega^t \in \Omega_{NA}^t$,

$$h\Delta S_{t+1}(\omega^t, \cdot) \geq 0 \quad Q_{t+1}(\omega^t)\text{-q.s.} \Rightarrow h\Delta S_{t+1}(\omega^t, \cdot) = 0 \quad Q_{t+1}(\omega^t)\text{-q.s.}$$
Measurability of the supports

Lemma

Let \(P \in Q^T \) with a fixed disintegration \(P := Q_1 \otimes q_2 \otimes \cdots \otimes q_T \). Under Assumptions 1 and 2, the following supports of the conditional distribution of \(\Delta S_{t+1}(\omega^t, \cdot) \)

\[
D_{t+1}^t(\omega^t) := \bigcap \left\{ A \subset \mathbb{R}^d, \text{closed}, \ P_{t+1} \left(\Delta S_{t+1}(\omega^t, \cdot) \in A \right) = 1, \ \forall P_{t+1} \in Q_{t+1}(\omega^t) \right\}
\]

\[
D_{P}^{t+1}(\omega^t) := \bigcap \left\{ A \subset \mathbb{R}^d, \text{closed}, \ q_{t+1} \left(\Delta S_{t+1}(\omega^t, \cdot) \in A, \omega^t \right) = 1 \right\},
\]

are non-empty, closed valued random set with graphs in \(\mathcal{B}_c(\Omega^t) \otimes \mathcal{B}(\mathbb{R}^d) \).
Geometric view in the spirit of [Jacod and Shiryaev, 1998, Theorem 3g]. Recall that \(\text{Ri}(C) = \{ y \in C, \exists \varepsilon > 0, \text{Aff}(C) \cap B(y, \varepsilon) \subset C \} \).

Definition

The geometric no-arbitrage condition holds true if for all \(0 \leq t \leq T - 1 \), there exists some \(Q^t \)-full measure set \(\Omega_{gNA}^t \in \mathcal{B}_c(\Omega^t) \) such that for all \(\omega^t \in \Omega_{gNA}^t \), \(0 \in \text{Ri} \left(\text{Conv} \left(D^{t+1} \right) \right) (\omega^t) \). In this case for all \(\omega^t \in \Omega_{gNA}^t \), there exists \(\varepsilon_t(\omega^t) > 0 \) such that

\[
B(0, \varepsilon_t(\omega^t)) \cap \text{Aff} \left(D^{t+1} \right) (\omega^t) \subset \text{Conv} \left(D^{t+1} \right) (\omega^t).
\]
Geometric view in the spirit of [Jacod and Shiryaev, 1998, Theorem 3g]].
Recall that \(\text{Ri}(C') = \{ y \in C, \exists \varepsilon > 0, \text{Aff}(C) \cap B(y, \varepsilon) \subset C \} \).

Definition

The geometric no-arbitrage condition holds true if for all \(0 \leq t \leq T - 1 \), there exists some \(Q^t \)-full measure set \(\Omega^t_{gNA} \in \mathcal{B}_c(\Omega^t) \) such that for all \(\omega^t \in \Omega^t_{gNA}, 0 \in \text{Ri} \left(\text{Conv}(D^{t+1}) \right) (\omega^t) \). In this case for all \(\omega^t \in \Omega^t_{gNA} \), there exists \(\varepsilon_t(\omega^t) > 0 \) such that

\[
B(0, \varepsilon_t(\omega^t)) \cap \text{Aff} \left(D^{t+1} \right) (\omega^t) \subset \text{Conv} \left(D^{t+1} \right) (\omega^t).
\]

- The geometric (local) no-arbitrage condition is indeed practical: it allows to check whether the (global) \(\text{NA}(Q^T) \) condition holds true or not.
Geometric view in the spirit of [Jacod and Shiryaev, 1998, Theorem 3g)].
Recall that \(\text{Ri}(C) = \{ y \in C, \exists \varepsilon > 0, \text{Aff}(C) \cap B(y, \varepsilon) \subset C \} \).

Definition

The geometric no-arbitrage condition holds true if for all \(0 \leq t \leq T - 1 \), there exists some \(Q^t \)-full measure set \(\Omega_{gNA}^t \in \mathcal{B}_c(\Omega^t) \) such that for all \(\omega^t \in \Omega_{gNA}^t \), \(0 \in \text{Ri} \left(\text{Conv}(D^{t+1}) \right)(\omega^t) \).

In this case for all \(\omega^t \in \Omega_{gNA}^t \), there exists \(\varepsilon_t(\omega^t) > 0 \) such that

\[
B(0, \varepsilon_t(\omega^t)) \cap \text{Aff}(D^{t+1})(\omega^t) \subset \text{Conv}(D^{t+1})(\omega^t).
\]

- The geometric (local) no-arbitrage condition is indeed practical: it allows to check whether the (global) NA\((Q^T) \) condition holds true or not.
- As \(Q_{t+1} \) and \(\Delta S_{t+1} \) are given one gets \(\text{Ri} \left(\text{Conv}(D^{t+1}) \right)(\cdot) \) and it is easy to check whether 0 is in it or not.
Quantitative NA

Quantitative view the spirit of [Rásonyi and Stettner, 2005, Proposition 3.3]

Definition

The quantitative no-arbitrage condition holds true if for all $0 \leq t \leq T - 1$, there exists some Q^t-full measure set $\Omega_{qNA}^t \in B_c(\Omega^t)$ such that for all $\omega^t \in \Omega_{qNA}^t$, there exists $\beta_t(\omega^t), \kappa_t(\omega^t) \in (0, 1]$ such that for all $h \in \text{Aff} \left(D^{t+1} \right) (\omega^t), h \neq 0$ there exists $P_h \in Q_{t+1}(\omega^t)$ satisfying

$$P_h \left(\frac{h}{|h|} \Delta S_{t+1}(\omega^t, \cdot) < -\beta_t(\omega^t) \right) \geq \kappa_t(\omega^t).$$
Quantitative NA

Quantitative view the spirit of [Rásonyi and Stettner, 2005, Proposition 3.3]

Definition

The quantitative no-arbitrage condition holds true if for all $0 \leq t \leq T - 1$, there exists some Q^{t}-full measure set $\Omega_{qNA}^{t} \in B_{c}(\Omega^{t})$ such that for all $\omega^{t} \in \Omega_{qNA}^{t}$, there exists $\beta_{t}(\omega^{t}), \kappa_{t}(\omega^{t}) \in (0, 1]$ such that for all $h \in \text{Aff}(D^{t+1})(\omega^{t})$, $h \neq 0$ there exists $P_{h} \in Q_{t+1}(\omega^{t})$ satisfying

$$P_{h} \left(\frac{h}{|h|} \Delta S_{t+1}(\omega^{t}, \cdot) < -\beta_{t}(\omega^{t}) \right) \geq \kappa_{t}(\omega^{t}).$$

- One risky asset and one period: there exists a prior for which the price of the risky asset increases enough and another one for which it decreases, $P^{\pm}(\mp \Delta S(\cdot) < -\alpha) > \alpha$ where $\alpha > 0$.
Quantitative NA

Quantitative view the spirit of [Rásonyi and Stettner, 2005, Proposition 3.3]

Definition

The quantitative no-arbitrage condition holds true if for all $0 \leq t \leq T - 1$, there exists some Q^t-full measure set $\Omega_{qNA}^t \in \mathcal{B}_c(\Omega^t)$ such that for all $\omega^t \in \Omega_{qNA}^t$, there exists $\beta_t(\omega^t), \kappa_t(\omega^t) \in (0, 1]$ such that for all $h \in \text{Aff}(D^{t+1}) (\omega^t)$, $h \neq 0$ there exists $P_h \in Q_{t+1}(\omega^t)$ satisfying

$$P_h \left(\frac{h}{|h|} \Delta S_{t+1}(\omega^t, \cdot) < -\beta_t(\omega^t) \right) \geq \kappa_t(\omega^t).$$

- One risky asset and one period: there exists a prior for which the price of the risky asset increases enough and an other one for which it decreases, $P^\pm (\mp \Delta S(\cdot) < -\alpha) > \alpha$ where $\alpha > 0$.
- The probability measure depends of the strategy.
Quantitative and geometric NA

Quantitative NA

- $\beta_t(\omega^t)$ provides information on $D^{t+1}(\omega^t)$ while $\kappa_t(\omega^t)$ provides information on $Q_{t+1}(\omega^t)$.
Quantitative NA

- $\beta_t(\omega^t)$ provides information on $D_{t+1}(\omega^t)$ while $\kappa_t(\omega^t)$ provides information on $Q_{t+1}(\omega^t)$.

- Quantitative (local) no-arbitrage condition is precious for solving the problem of maximisation of expected utility.
Quantitative NA

- $\beta_t(\omega^t)$ provides information on $D^{t+1}(\omega^t)$ while $\kappa_t(\omega^t)$ provides information on $Q_{t+1}(\omega^t)$.

- Quantitative (local) no-arbitrage condition is precious for solving the problem of maximisation of expected utility.

- When $\text{Dom}(U) = (0, \infty)$ it provides natural bounds for the one step strategies or for $U(V_T^x, \Phi)$, see [Blanchard and Carassus, 2018].
Quantitative NA

- $\beta_t(\omega^t)$ provides information on $D_t^{t+1}(\omega^t)$ while $\kappa_t(\omega^t)$ provides information on $Q_{t+1}(\omega^t)$.
- Quantitative (local) no-arbitrage condition is precious for solving the problem of maximisation of expected utility.
- When $\text{Dom}(U) = (0, \infty)$ it provides natural bounds for the one step strategies or for $U(V_T^x, \Phi)$, see [Blanchard and Carassus, 2018].
- Used to prove the existence of the optimal strategy but could also be used to compute it numerically.
• $\beta_t(\omega^t)$ provides information on $D^{t+1}(\omega^t)$ while $\kappa_t(\omega^t)$ provides information on $Q_{t+1}(\omega^t)$.

• Quantitative (local) no-arbitrage condition is precious for solving the problem of maximisation of expected utility.

• When $\text{Dom}(U) = (0, \infty)$ it provides natural bounds for the one step strategies or for $U(V^{x,\Phi}_T)$, see [Blanchard and Carassus, 2018].

• Used to prove the existence of the optimal strategy but could also be used to compute it numerically.

• Explicit values for β_t and κ_t are given.
Theorem

Assume that Assumptions 1 and 2 hold true. Then the $NA(Q^T)$ condition, the geometric no-arbitrage and the quantitative no-arbitrage are equivalent and one can choose for all $0 \leq t \leq T - 1$

$$
\Omega_{t NA} = \Omega_{t qNA} = \Omega_{t gNA}
$$

*and $\beta_t = \varepsilon_t / 2$.***
Theorem

Assume that Assumptions 1 and 2 hold true. Then the \(NA(Q^T) \) condition, the geometric no-arbitrage and the quantitative no-arbitrage are equivalent and one can choose for all \(0 \leq t \leq T - 1 \)

\[
\Omega^t_{NA} = \Omega^t_{qNA} = \Omega^t_{gNA}
\]

and \(\beta_t = \varepsilon_t / 2 \).

Proposition

Assume that Assumptions 1 and 2 hold true. Under one of the no-arbitrage conditions one can choose an universally measurable version of \(\varepsilon_t \) and \(\beta_t \).
Probability measure P^*

- $wNA(Q^T)$ does not imply $NA(Q^T)$ condition.
Probability measure P^*

- $wNA(Q^T)$ does not imply $NA(Q^T)$ condition.
- One period model with two risky assets $S_0^i = 0$ and $S_1^i : \Omega \rightarrow \mathbb{R}$.

Probability measure P^*

- $wNA(Q^T)$ does not imply $NA(Q^T)$ condition.
- One period model with two risky assets $S^i_0 = 0$ and $S^i_1 : \Omega \to \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S^1_1 \geq 0) = 1$, $P_1(\Delta S^1_1 > 0) > 0$.

Second Main result

Probability measure P^*

- $wNA(Q^T)$ does not imply $NA(Q^T)$ condition.
- One period model with two risky assets $S_i^0 = 0$ and $S_i^1 : \Omega \rightarrow \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S_1^1 \geq 0) = 1$, $P_1(\Delta S_1^1 > 0) > 0$.
- Let P_2 s.t. $P_2(\Delta S_1^1 = 0) = 1$, $P_2(\pm \Delta S_1^2 > 0) > 0$.

Probability measure P^*

- $wNA(Q^T)$ does not imply $NA(Q^T)$ condition.
- One period model with two risky assets $S_0^i = 0$ and $S_1^i : \Omega \rightarrow \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S_1^1 \geq 0) = 1$, $P_1(\Delta S_1^1 > 0) > 0$.
- Let P_2 s.t. $P_2(\Delta S_1^1 = 0) = 1$, $P_2(\pm \Delta S_1^2 > 0) > 0$.
- $Q = \{\lambda P_1 + (1 - \lambda)P_2, \ 0 < \lambda \leq 1\}$.
Probability measure P^*

- $wNA(Q^T)$ does not imply $NA(Q^T)$ condition.
- One period model with two risky assets $S_0^i = 0$ and $S_1^i : \Omega \to \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S_1^1 \geq 0) = 1$, $P_1(\Delta S_1^1 > 0) > 0$.
- Let P_2 s.t. $P_2(\Delta S_1^1 = 0) = 1$, $P_2(\pm \Delta S_1^2 > 0) > 0$.
- $Q = \{\lambda P_1 + (1 - \lambda)P_2, \ 0 < \lambda \leq 1\}$.
- $NA(P_2)$ and the $wNA(Q)$ hold true.
Probability measure P^*

- $wNA(Q^T)$ does not imply $NA(Q^T)$ condition.
- One period model with two risky assets $S^i_0 = 0$ and $S^i_1 : \Omega \rightarrow \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S^1_1 \geq 0) = 1$, $P_1(\Delta S^1_1 > 0) > 0$.
- Let P_2 s.t. $P_2(\Delta S^1_1 = 0) = 1$, $P_2(\pm \Delta S^2_1 > 0) > 0$.
- $Q = \{\lambda P_1 + (1 - \lambda)P_2, \ 0 < \lambda \leq 1\}$.
- $NA(P_2)$ and the $wNA(Q)$ hold true.
- $NA(Q)$ condition does not hold true: Let $h = (1, 0)$. Then $h\Delta S^1_1 \geq 0$ Q-q.s. but $P_1(h\Delta S^1_1 > 0) > 0$.

Note that $Aff(D_{P_2}) = \mathbb{R}^2$ and $Aff(D_{P_2}) = \{(0,0)\} \times \mathbb{R}$.
Probability measure P^*

- $wNA(Q^T)$ does not imply $NA(Q^T)$ condition.
- One period model with two risky assets $S_0^i = 0$ and $S_1^i : \Omega \rightarrow \mathbb{R}$.
- Let P_1 s.t. $P_1(\Delta S_1^1 \geq 0) = 1$, $P_1(\Delta S_1^1 > 0) > 0$.
- Let P_2 s.t. $P_2(\Delta S_1^1 = 0) = 1$, $P_2(\pm \Delta S_1^2 > 0) > 0$.
- $Q = \{\lambda P_1 + (1 - \lambda)P_2, 0 < \lambda \leq 1\}$.
- $NA(P_2)$ and the $wNA(Q)$ hold true.
- $NA(Q)$ condition does not hold true: Let $h = (1, 0)$. Then $h\Delta S_1^1 \geq 0$ Q-q.s. but $P_1(h\Delta S_1 > 0) > 0$.
- Note that $Aff(D) = \mathbb{R}^2$ and $Aff(D_{P_2}) = \{0\} \times \mathbb{R}$.
Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- \(NA(Q^T) \) holds true.
Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $P^* \in Q^T$ such that for all $0 \leq t \leq T - 1$, $\omega^t \in \Omega^t_{NA}$
Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $P^* \in Q^T$ such that for all $0 \leq t \leq T - 1$,
 * $\omega^t \in \Omega_{NA}^t$
 * $Aff(D_{P*}^{t+1}) (\omega^t) = Aff(D^{t+1}) (\omega^t)$
Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $P^* \in Q^T$ such that for all $0 \leq t \leq T - 1$,
 $\omega^t \in \Omega_{NA}^t$
 - $\text{Aff}(D_{P^*}^{t+1}) (\omega^t) = \text{Aff}(D^{t+1}) (\omega^t)$
 - $0 \in \text{Ri}(\text{Conv}(D_{P^*}^{t+1})) (\omega^t)$.
Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $P^* \in Q^T$ such that for all $0 \leq t \leq T - 1$, $\omega^t \in \Omega_{NA}$
 - $\text{Aff}(D_{P^*}^{t+1}) (\omega^t) = \text{Aff}(D^{t+1}) (\omega^t)$
 - $0 \in \text{Ri}(\text{Conv}(D_{P^*}^{t+1})) (\omega^t)$.

- $NA(P^*)$ condition holds true and even more.
Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $P^* \in Q^T$ such that for all $0 \leq t \leq T - 1,
 \omega^t \in \Omega^t_{NA}$
 - $Aff(D^{t+1}_{P^*}) (\omega^t) = Aff(D^{t+1}) (\omega^t)$
 - $0 \in Ri(Conv(D^{t+1}_{P^*})) (\omega^t)$.

- $NA(P^*)$ condition holds true and even more.
- The condition $Aff(D^{t+1}_{P^*})(\cdot) = Aff(D^{t+1})(\cdot) Q^t$-q.s. is necessary
 (see the preceding counterexample).
Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- \(\text{NA}(Q^T) \) holds true.
- There exists some \(P^* \in Q^T \) such that for all \(0 \leq t \leq T - 1 \), \(\omega^t \in \Omega^t_{\text{NA}} \)
 - \(\text{Aff}(D^{t+1}_{P^*}) (\omega^t) = \text{Aff}(D^{t+1}) (\omega^t) \)
 - \(0 \in \text{Ri} \left(\text{Conv}(D^{t+1}_{P^*}) \right) (\omega^t) \).

- \(\text{NA}(P^*) \) condition holds true and even more.
- The condition \(\text{Aff}(D^{t+1}_{P^*}) (\cdot) = \text{Aff}(D^{t+1}) (\cdot) \) \(Q^t \text{-q.s.} \) is necessary (see the preceding counterexample).
- Other counterexample if \(0 \in \text{Ri} \left(\text{Conv}(D^{t+1}_{P^*}) \right) (\cdot) \) \(P^*_t \text{-p.s.} \) instead of \(0 \in \text{Ri} \left(\text{Conv}(D^{t+1}_{P^*}) \right) (\cdot) \) \(Q^t \text{-q.s.} \).
Second Main result

Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- \(NA(Q^T) \) holds true.
- There exists some \(P^* \in Q^T \) such that for all \(0 \leq t \leq T - 1 \), \(\omega^t \in \Omega_{NA}^t \)
 - \(Aff(D^{t+1}_{P^*}) (\omega^t) = Aff(D^{t+1}) (\omega^t) \)
 - \(0 \in Ri(Conv(D^{t+1}_{P^*})) (\omega^t) \).

- \(NA(P^*) \) condition holds true and even more.
- The condition \(Aff(D^{t+1}_{P^*}) (\cdot) = Aff(D^{t+1}) (\cdot) \) \(Q^t \)-q.s. is necessary (see the preceding counterexample).
- Other counterexample if \(0 \in Ri(Conv(D^{t+1}_{P^*})) (\cdot) \) \(P^*_t \)-p.s. instead of \(0 \in Ri(Conv(D^{t+1}_{P^*})) (\cdot) \) \(Q^t \)-q.s.
- \(P^* \) was used to build \(\mathcal{P}^T \).
Theorem

Assume that Assumptions 1. and 2. hold true. TFAE

- $NA(Q^T)$ holds true.
- There exists some $P^* \in Q^T$ such that for all $0 \leq t \leq T - 1$, $\omega^t \in \Omega^t_{NA}$
 - $\text{Aff}(D_{P^*}^{t+1})(\omega^t) = \text{Aff}(D^{t+1})(\omega^t)$
 - $0 \in \text{Ri}(\text{Conv}(D_{P^*}^{t+1}))(\omega^t)$.

- $NA(P^*)$ condition holds true and even more.
- The condition $\text{Aff}(D_{P^*}^{t+1})(\cdot) = \text{Aff}(D^{t+1})(\cdot) Q^t$-q.s. is necessary (see the preceding counterexample).
- Other counterexample if $0 \in \text{Ri}(\text{Conv}(D_{P^*}^{t+1}))(\cdot) P^*_t$-p.s. instead of $0 \in \text{Ri}(\text{Conv}(D_{P^*}^{t+1}))(\cdot) Q^t$-q.s.
- P^* was used to build \mathcal{P}^T.
- The probability measure P^* of Theorem 11 is not unique.
Complement [Oblój and Wiesel, 2018, Theorem 3.1] which makes the link with the quasi-sure setting.
• Complement [Oblój and Wiesel, 2018, Theorem 3.1] which makes the link with the quasi-sure setting.

• The existence of P^* show that $NA(Q^T)$ implies that (an adaptation of) [Rásonyi and Meireles-Rodrigues, 2018, Assumption 2.1] and thus [Rásonyi and Meireles-Rodrigues, 2018, Theorem 3.7] which shows the existence in the problem of maximisation of expected utility for bounded function defined on the whole real line works under $NA(Q^T)$.
Complement [Oblój and Wiesel, 2018, Theorem 3.1] which makes the link with the quasi-sure setting.

The existence of P^* show that $NA(Q^T)$ implies that (an adaptation of) [Rásonyi and Meireles-Rodrigues, 2018, Assumption 2.1] and thus [Rásonyi and Meireles-Rodrigues, 2018, Theorem 3.7] which shows the existence in the problem of maximisation of expected utility for bounded function defined on the whole real line works under $NA(Q^T)$.

One can choose P^* as common probability measure in the quantitative definition of NA.
Complement [Oblój and Wiesel, 2018, Theorem 3.1] which makes the link with the quasi-sure setting.

The existence of P^* show that $NA(Q^T)$ implies that (an adaptation of) [Rásonyi and Meireles-Rodrigues, 2018, Assumption 2.1] and thus [Rásonyi and Meireles-Rodrigues, 2018, Theorem 3.7] which shows the existence in the problem of maximisation of expected utility for bounded function defined on the whole real line works under $NA(Q^T)$.

One can choose P^* as common probability measure in the quantitative definition of NA.

Allows to find universally measurable version of κ_t.
Proposition

Assume that Assumptions 1. and 2. hold true. Assume furthermore that there exists some dominating measure $\hat{P} \in Q^T$. Then

- The $NA(\hat{P})$ and the $NA(Q^T)$ conditions are equivalent.
Proposition

Assume that Assumptions 1. and 2. hold true. Assume furthermore that there exists some dominating measure $\hat{P} \in Q^T$. Then

- **The** $NA(\hat{P})$ **and the** $NA(Q^T)$ **conditions are equivalent.**
- **One can choose** $P^* = \hat{P}$ in \mathcal{P}^T.
Proposition

Assume that Assumptions 1. and 2. hold true. Assume furthermore that there exists some dominating measure \(\hat{P} \in Q^T \). Then

- The \(\text{NA}(\hat{P}) \) and the \(\text{NA}(Q^T) \) conditions are equivalent.
- One can choose \(P^* = \hat{P} \) in \(P^T \).

Proposition

Assume that Assumption 2. holds true and that there exists

1. some \(\tilde{P} \in Q^T \)
2. some \(0 \leq \tilde{t} \leq T - 1 \) and some \(\Omega_{\tilde{t}}^N \in \mathcal{B}_c(\Omega_{\tilde{t}}) \) such that
 - \(\tilde{P}^{\tilde{t}}(\Omega_{\tilde{t}}^N) > 0 \)
 - \(Q_{\tilde{t}+1}(\omega^{\tilde{t}}) \) is not dominated for all \(\omega^{\tilde{t}} \in \Omega_{\tilde{t}}^N \).

Then \(Q^T \) is not dominated.
Suppose that $T \geq 1$, $d = 1$ and $\Omega_t = \mathbb{R}$ for all $1 \leq t \leq T$.
Suppose that $T \geq 1$, $d = 1$ and $\Omega_t = \mathbb{R}$ for all $1 \leq t \leq T$.

$S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.

Suppose that $T \geq 1$, $d = 1$ and $\Omega_t = \mathbb{R}$ for all $1 \leq t \leq T$.

- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.

- Assumption 1. is verified. Let

$$B_{t+1}(\omega^t) := \{p\delta_u + (1 - p)\delta_d, \ p_t(\omega^t) \leq p \leq P_t(\omega^t), \ u_t(\omega^t) \leq u \leq U_t(\omega^t), \ d_t(\omega^t) \leq d \leq D_t(\omega^t)\},$$
Suppose that $T \geq 1$, $d = 1$ and $\Omega_t = \mathbb{R}$ for all $1 \leq t \leq T$.

- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.

Assumption 1. is verified. Let

$$
B_{t+1}(\omega^t) := \{p\delta_u + (1 - p)\delta_d, \ p_t(\omega^t) \leq p \leq P_t(\omega^t), \ u_t(\omega^t) \leq u \leq U_t(\omega^t), \ d_t(\omega^t) \leq d \leq D_t(\omega^t) \},
$$

where P_t, U_t, D_t are Borel-measurable r.v. s.t.
• Suppose that $T \geq 1$, $d = 1$ and $\Omega_t = \mathbb{R}$ for all $1 \leq t \leq T$.

• $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.

• Assumption 1. is verified. Let

$$B_{t+1}(\omega^t) := \{p\delta_u + (1 - p)\delta_d, \ p_t(\omega^t) \leq p \leq P_t(\omega^t), \ u_t(\omega^t) \leq u \leq U_t(\omega^t), \ d_t(\omega^t) \leq d \leq D_t(\omega^t)\},$$

where $p_t, P_t, u_t, U_t, d_t, D_t$ are Borel-measurable r.v. s.t.

• $p_t(\omega^t), P_t(\omega^t) \in [0, 1]$ and $p_t(\omega^t) < 1, \ P_t(\omega^t) > 0$.
Suppose that $T \geq 1$, $d = 1$ and $\Omega_t = \mathbb{R}$ for all $1 \leq t \leq T$.

- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.

- Assumption 1. is verified. Let

$$B_{t+1}(\omega^t) := \{p \delta_u + (1 - p) \delta_d, \ p_t(\omega^t) \leq p \leq P_t(\omega^t), \ u_t(\omega^t) \leq u \leq U_t(\omega^t), \ d_t(\omega^t) \leq d \leq D_t(\omega^t)\},$$

where $p_t, P_t, u_t, U_t, d_t, D_t$ are Borel-measurable r.v. s.t.

- $p_t(\omega^t), P_t(\omega^t) \in [0, 1]$ and $p_t(\omega^t) < 1, \ P_t(\omega^t) > 0$
- $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$.
Suppose that $T \geq 1$, $d = 1$ and $\Omega_t = \mathbb{R}$ for all $1 \leq t \leq T$.

$S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t.
$Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.

Assumption 1. is verified. Let

$$B_{t+1}(\omega^t) := \{p\delta_u + (1 - p)\delta_d, \, p_t(\omega^t) \leq p \leq P_t(\omega^t),$$
$$u_t(\omega^t) \leq u \leq U_t(\omega^t), \, d_t(\omega^t) \leq d \leq D_t(\omega^t)\},$$

where $p_t, P_t, u_t, U_t, d_t, D_t$ are Borel-measurable r.v. s.t.

- $p_t(\omega^t), P_t(\omega^t) \in [0, 1]$ and $p_t(\omega^t) < 1, \, P_t(\omega^t) > 0$
- $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$.

Then

$$Q_{t+1}(\omega^t) := \text{Conv} \left(\{Q \in \mathcal{P}(\Omega_{t+1}), \, Q(Y_{t+1} \in \cdot) \in B_{t+1}(\omega^t)\} \right),$$
- Suppose that $T \geq 1$, $d = 1$ and $\Omega_t = \mathbb{R}$ for all $1 \leq t \leq T$.
- $S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.
- Assumption 1. is verified. Let
 \[B_{t+1}(\omega^t) := \{ p \delta_u + (1 - p) \delta_d, \quad p_t(\omega^t) \leq p \leq P_t(\omega^t), \]
 \[u_t(\omega^t) \leq u \leq U_t(\omega^t), \quad d_t(\omega^t) \leq d \leq D_t(\omega^t) \}, \]
where $p_t, P_t, u_t, U_t, d_t, D_t$ are Borel-measurable r.v. s.t.
- $p_t(\omega^t), P_t(\omega^t) \in [0, 1]$ and $p_t(\omega^t) < 1$, $P_t(\omega^t) > 0$
- $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$.
- Then
 \[Q_{t+1}(\omega^t) := \text{Conv} \left(\{ Q \in \mathcal{P}(\Omega_{t+1}), \quad Q(Y_{t+1} \in \cdot) \in B_{t+1}(\omega^t) \} \right), \]
Usual binomial model corresponds: $p_t = P_t = p$, $u_t = U_t = u$ and $d_t = D_T = d$ where $0 < p < 1$, $d < 1 < u$.

Suppose that $T \geq 1$, $d = 1$ and $\Omega_t = \mathbb{R}$ for all $1 \leq t \leq T$.

$S_0 = 1$ and $S_{t+1} = S_t Y_{t+1}$ where Y_{t+1} Borel-measurable r.v. s.t. $Y_{t+1}(\Omega_{t+1}) = (0, \infty)$.

Assumption 1. is verified. Let

$$B_{t+1}(\omega^t) := \{p \delta_u + (1 - p) \delta_d, \ p_t(\omega^t) \leq p \leq P_t(\omega^t), \ u_t(\omega^t) \leq u \leq U_t(\omega^t), \ d_t(\omega^t) \leq d \leq D_t(\omega^t)\},$$

where $p_t, P_t, u_t, U_t, d_t, D_t$ are Borel-measurable r.v. s.t.

$p_t(\omega^t), P_t(\omega^t) \in [0, 1]$ and $p_t(\omega^t) < 1, P_t(\omega^t) > 0$

$0 < d_t(\omega^t) < 1 < U_t(\omega^t)$.

Then

$$Q_{t+1}(\omega^t) := \text{Conv} \left(\{Q \in \mathcal{P}(\Omega_{t+1}), \ Q(Y_{t+1} \in \cdot) \in B_{t+1}(\omega^t)\} \right),$$

Usual binomial model corresponds : $p_t = P_t = p$, $u_t = U_t = u$ and $d_t = D_T = d$ where $0 < p < 1$, $d < 1 < u$.

Assumption 2. holds true.
$S_{t+1} - S_t = S_t(Y_{t+1} - 1)$ and $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$
\[S_{t+1} - S_t = S_t(Y_{t+1} - 1) \text{ and } 0 < d_t(\omega^t) < 1 < U_t(\omega^t) \]

\[\text{Conv}(D^{t+1})(\omega^t) = [S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(U_t(\omega^t) - 1)] \]
• $S_{t+1} - S_t = S_t(Y_{t+1} - 1)$ and $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$

• $\text{Conv}(D^{t+1})(\omega^t) = [S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(U_t(\omega^t) - 1)]$.

• $NA(Q^T)$ holds true: $0 \in \text{Ri} \left(\text{Conv}(D^{t+1})\right)(\omega^t)$ for all $\omega^t \in \Omega^t$.

\begin{itemize}
 \item $S_{t+1} - S_t = S_t(Y_{t+1} - 1)$ and $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$
 \item $\text{Conv} \left(D^{t+1} \right)(\omega^t) = [S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(U_t(\omega^t) - 1)]$.
 \item $NA(Q^T)$ holds true: $0 \in \text{Ri} \left(\text{Conv} \left(D^{t+1} \right) \right)(\omega^t)$ for all $\omega^t \in \Omega^t$.
 \item If for instance $u_t(\omega^t) < 1$ for all ω^t, $\exists a_t(\omega^t) \in [u_t(\omega^t), 1)$. Let for $\pi_t(\omega^t) \in [p_t(\omega^t), P_t(\omega^t)]$
 \begin{align*}
 q_{t+1}(\Delta S_{t+1} \in \cdot, \omega^t) &= \pi_t(\omega^t)\delta_{a_t(\omega^t)}(\cdot) + (1 - \pi_t(\omega^t))\delta_{d_t(\omega^t)}(\cdot) \\
 Q &= Q_1 \otimes \cdots \otimes q_t \in Q^T \\
 \text{Conv} \left(D_{Q}^{t+1} \right)(\omega^t) &= [S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(a_t(\omega^t) - 1)]
 \end{align*}
\end{itemize}
• $S_{t+1} - S_t = S_t(Y_{t+1} - 1)$ and $0 < d_t(\omega^t) < 1 < U_t(\omega^t)$
• $\text{Conv} \left(D^{t+1} \right)(\omega^t) = [S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(U_t(\omega^t) - 1)].$
• $\text{NA}(Q^T)$ holds true: $0 \in \text{Ri} \left(\text{Conv} \left(D^{t+1} \right) \right)(\omega^t)$ for all $\omega^t \in \Omega^t.$
• If for instance $u_t(\omega^t) < 1$ for all ω^t, $\exists a_t(\omega^t) \in [u_t(\omega^t), 1)$. Let for $\pi_t(\omega^t) \in [p_t(\omega^t), P_t(\omega^t)]$

$$q_{t+1}(\Delta S_{t+1} \in \cdot, \omega^t) = \pi_t(\omega^t)\delta_{a_t(\omega^t)}(\cdot) + \left(1 - \pi_t(\omega^t)\right)\delta_{d_t(\omega^t)}(\cdot)$$

$$Q = Q_1 \otimes \cdots \otimes q_t \in Q^T$$

$$\text{Conv} \left(D_Q^{t+1} \right)(\omega^t) = [S_t(\omega^t)(d_t(\omega^t) - 1), S_t(\omega^t)(a_t(\omega^t) - 1)]$$

• $0 \notin \text{Ri} \left(\text{Conv} \left(D_Q^{t+1} \right) \right)(\omega^t)$ for all $\omega^t \in \Omega^t$ and both the $\text{NA}(Q)$ and $\text{sNA}(Q^T)$ conditions fail.
- Explicit expressions for ε_t, β_t and κ_t

\[
\frac{\varepsilon_t(\omega^t)}{2} = \beta_t(\omega^t) = \frac{S_t(\omega^t)}{N} \min\left(\frac{U_t(\omega^t) - 1}{2}, \frac{1 - d_t(\omega^t)}{2}\right) > 0,
\]
\[
\kappa_t(\omega^t) = \frac{1}{M} \min\left(\frac{p_t(\omega^t) + P_t(\omega^t)}{2}, 1 - \frac{p_t(\omega^t) + P_t(\omega^t)}{2}\right) > 0.
\]
Explicit expressions for ε_t, β_t and κ_t

$$
\frac{\varepsilon_t(\omega^t)}{2} = \beta_t(\omega^t) = \frac{S_t(\omega^t)}{N} \min \left(\frac{U_t(\omega^t) - 1}{2}, \frac{1 - d_t(\omega^t)}{2} \right) > 0,
$$

$$
\kappa_t(\omega^t) = \frac{1}{M} \min \left(\frac{p_t(\omega^t) + P_t(\omega^t)}{2}, 1 - \frac{p_t(\omega^t) + P_t(\omega^t)}{2} \right) > 0.
$$

$N > 1$ and $M \geq 1$ are fixed and allows to get sharper bounds.
Explicit expressions for \(\varepsilon_t, \beta_t \) and \(\kappa_t \)

\[
\frac{\varepsilon_t(\omega^t)}{2} = \beta_t(\omega^t) = \frac{S_t(\omega^t)}{N} \min \left(\frac{U_t(\omega^t) - 1}{2}, \frac{1 - d_t(\omega^t)}{2} \right) > 0,
\]

\[
\kappa_t(\omega^t) = \frac{1}{M} \min \left(\frac{p_t(\omega^t) + P_t(\omega^t)}{2}, 1 - \frac{p_t(\omega^t) + P_t(\omega^t)}{2} \right) > 0.
\]

- \(N > 1 \) and \(M \geq 1 \) are fixed and allows to get sharper bounds.
- The (Borel) measurability of \(\varepsilon_t, \beta_t \) and \(\kappa_t \) are clear.
• Explicit expressions for ε_t, β_t and κ_t

$$\frac{\varepsilon_t(\omega^t)}{2} = \beta_t(\omega^t) = \frac{S_t(\omega^t)}{N} \min\left(\frac{U_t(\omega^t) - 1}{2}, \frac{1 - d_t(\omega^t)}{2}\right) > 0,$$

$$\kappa_t(\omega^t) = \frac{1}{M} \min\left(\frac{p_t(\omega^t) + P_t(\omega^t)}{2}, 1 - \frac{p_t(\omega^t) + P_t(\omega^t)}{2}\right) > 0.$$

• $N > 1$ and $M \geq 1$ are fixed and allows to get sharper bounds.

• The (Borel) measurability of ε_t, β_t and κ_t are clear.

• Let $\bar{\pi}_t(\omega^t) := \frac{p_t(\omega^t) + P_t(\omega^t)}{2} \in (0, 1)$ and a^\pm, b^\pm be chosen such that

$$a^+_t(\omega^t) := U_t(\omega^t) > 1, \quad b^+_t(\omega^t) := \min\left(D_t(\omega^t) + \frac{d_t(\omega^t) + 1}{2}\right) < 1,$$

$$a^-_t(\omega^t) := \max\left(u_t(\omega^t) + \frac{U_t(\omega^t) + 1}{2}\right) > 1, \quad b^-_t(\omega^t) := d_t(\omega^t) < 1,$$

$$r^+_t(\omega^t) := 1 - \bar{\pi}_t(\omega^t), \quad b^-_t(\omega^t) = d_t(\omega^t) < 1,$$

$$r^*_t(\omega^t) := \frac{1}{2} \left(r^+_t(\omega^t) + r^-_t(\omega^t)\right) \in \mathcal{B}_{t+1}(\omega^t),$$

$$p^*_t(Y_{t+1} \in \omega^t) := r^*_t(\omega^t) \in \mathcal{Q}_{t+1}(\omega^t).$$
Explicit expressions for ε_t, β_t and κ_t

\[
\begin{align*}
\varepsilon_t(\omega^t) &= \beta_t(\omega^t) = \frac{S_t(\omega^t)}{N} \min\left(\frac{U_t(\omega^t) - 1}{2}, \frac{1 - d_t(\omega^t)}{2}\right) > 0, \\
\kappa_t(\omega^t) &= \frac{1}{M} \min\left(\frac{p_t(\omega^t) + P_t(\omega^t)}{2}, 1 - \frac{p_t(\omega^t) + P_t(\omega^t)}{2}\right) > 0.
\end{align*}
\]

- $N > 1$ and $M \geq 1$ are fixed and allows to get sharper bounds.
- The (Borel) measurability of ε_t, β_t and κ_t are clear.
- Let $\bar{\pi}_t(\omega^t) := \frac{p_t(\omega^t) + P_t(\omega^t)}{2} \in (0, 1)$ and a^{\pm}, b^{\pm} be chosen such that

\[
\begin{align*}
a_t^+(\omega^t) &:= U_t(\omega^t) > 1, \quad b_t^+(\omega^t) := \min\left(D_t(\omega^t), \frac{d_t(\omega^t) + 1}{2}\right) < 1, \\
a_t^-(\omega^t) &:= \max\left(u_t(\omega^t), \frac{U_t(\omega^t) + 1}{2}\right) > 1, \quad b_t^-(\omega^t) := d_t(\omega^t) < 1,
\end{align*}
\]

\[
\begin{align*}
r_t^{\pm}(\cdot, \omega^t) &:= \bar{\pi}_t(\omega^t)\delta_{a_t^{\pm} \omega^t}(\cdot) + (1 - \bar{\pi}_t(\omega^t))\delta_{b_t^{\pm}(\omega^t)}(\cdot) \in \mathcal{B}_{t+1}(\omega^t), \\
 r_t^*(\cdot, \omega^t) &:= \frac{1}{2} (r_t^+(\cdot, \omega^t) + r_t^-(\cdot, \omega^t)) \in \mathcal{B}_{t+1}(\omega^t),
\end{align*}
\]

\[
p_t^*(Y_{t+1} \in \cdot, \omega^t) := r_t^*(\cdot, \omega^t) \in \mathcal{Q}_{t+1}(\omega^t)
\]

\[
p_t^*(\pm \Delta S_{t+1}(\omega^t, \cdot) < -\beta_t(\omega^t), \omega^t) \geq \kappa_t(\omega^t).
\]
Choose
Choose

\[P^* := P_0^* \otimes \cdots \otimes p_{t+1}^* \otimes \cdots p_T^* \in Q^T. \]

0 \in \text{Ri} \left(\text{Conv} \left(D_{P^*}^{t+1} \right) \right) (\omega^t)

and that \(\text{Aff} \left(D_{P^*}^{t+1} \right) (\omega^t) = \text{Aff} \left(D^{t+1} \right) (\omega^t) \) for all \(\omega^t \).
Choose

\[P^* := P_0^* \otimes \cdots \otimes p_{t+1}^* \otimes \cdots p_T^* \in Q^T. \quad 0 \in \text{Ri} \left(\text{Conv}(D_{P^*}^{t+1}) \right) (\omega^t) \]

and that \(\text{Aff} \left(D_{P^*}^{t+1} \right) (\omega^t) = \text{Aff} \left(D^{t+1} \right) (\omega^t) \) for all \(\omega^t \).

Note that \(P^* \) is not unique.
Choose

\[P^* := P_0^* \otimes \cdots \otimes p_{t+1}^* \otimes \cdots p_T^* \in \mathcal{Q}^T. \quad 0 \in \text{Ri}\left(\text{Conv}(D_{P^*}^{t+1})\right)(\omega^t) \]
and that \(\text{Aff}\left(\text{Conv}(D_{P^*}^{t+1})\right)(\omega^t) = \text{Aff}\left(\text{Conv}(D_t^{t+1})\right)(\omega^t) \) for all \(\omega^t \).

Note that \(P^* \) is not unique.

Finally, if for some \(0 \leq t \leq T - 1, \omega^t \in \Omega^t, u_t(\omega^t) < U_t(\omega^t) \) or \(d_t(\omega^t) < D_t(\omega^t) \) the set \(\mathcal{Q}_{t+1}(\omega^t) \) is non-dominated and \(\mathcal{Q}^T \) is also non-dominated.
Choose

$P^* := P_0^* \otimes \cdots \otimes p_{t+1}^* \otimes \cdots p_T^* \in Q^T. 0 \in \text{Ri} \left(\text{Conv} \left(D_{P^*}^{t+1} \right) \right)(\omega^t)$

and that $\text{Aff} \left(D_{P^*}^{t+1} \right)(\omega^t) = \text{Aff} \left(D_{P^*}^{t+1} \right)(\omega^t)$ for all ω^t.

Note that P^* is not unique.

Finally, if for some $0 \leq t \leq T - 1$, $\omega^t \in \Omega^t$, $u_t(\omega^t) < U_t(\omega^t)$ or $d_t(\omega^t) < D_t(\omega^t)$ the set $Q_{t+1}(\omega^t)$ is non-dominated and Q^T is also non-dominated.

Indeed, if not, any dominating measure would have an uncountable number of atoms.
Conclusion

- We have understood in details the quasi-sure no arbitrage condition and studied the link with different types of robust no-arbitrage conditions (local or global) in discrete time.
Conclusion

- We have understood in details the quasi-sure no arbitrage condition and studied the link with different types of robust no-arbitrage conditions (local or global) in discrete time.
- Our main result gives the existence of a set of priors having the same polar sets than the original one and such each priors is arbitrage free.
Conclusion

- We have understood in details the quasi-sure no arbitrage condition and studied the link with different types of robust no-arbitrage conditions (local or global) in discrete time.
- Our main result gives the existence of a set of priors having the same polar sets than the original one and such each priors is arbitrage free.
- We give concrete examples where all the quantities appearing in the different definitions and characterizations of NA are explicit.

