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Make-Take Fees and Contact Theory

Trading Makers-Takers fees... towards Fintech

Makers & Takers

The SEC is scrutinizing a common practice where exchanges pay
some stock-market players rebates and charge fees to others.

Here’s how it works:
|’ P ’

A high-frequency trading firm A broker for a mutual fund
offers to sell 100 shares of XYZ buys 100 shares of XYZ for
stock for $10.02 a share and buy $10.02.

at $10.00 a share.

The high-frequency trader
is paid 256 because his sell

B e eined makeihe The fund’s broker must

trade take place. pay the exchange 30¢
because he took an

The exchange keeps available order.

the difference of 5¢. —[ ]

Source: WSJ staff reports The Wall Street Journal
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Introduction: Principal-Agent problem  Risk sharing

Delegation problem: accounting for moral hazard

X: value of an output process owned by Principal
Agent devotes effort a, thus impacting distribution of X = X?

@ cost of effort c(a)

@ compensation & : contract

Choose ¢ so that Agent devotes effort in the interest of Principal

Performs work
— %

Self

wos | AgeNt Principal | i

E Rewards work

£l

Infarmatios
ansymatry
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Introduction: Principal-Agent problem  Risk sharing

Second best contracting: Principal-Agent Problem

e Principal delegates management of output process X,
only observes X

e Agent devotes effort a = X?, chooses optimal effort by

VA = mfoE UA( —c(a))
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(Static) Principal-Agent Problem

e Principal delegates management of output process X,
only observes X
pays salary defined by contract £(X)

e Agent devotes effort a = X?, chooses optimal effort by

\/A(f) = m;le UA<E(X3) — c(a)) — §(f)
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(Static) Principal-Agent Problem

e Principal delegates management of output process X,
only observes X
pays salary defined by contract £(X)

e Agent devotes effort a = X?, chooses optimal effort by
\/A(f) = m;le UA<E(X3) — c(a)) — §(f)
e Principal chooses optimal contract by solving

mEaxIE Up (X‘Aa({) - E(Xé(g))) under constraint V(&) > R
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Introduction: Principal-Agent problem  Risk sharing

Contract theory at the heart of modern economic theory
Jean Tirole, Nobel Prize 2014: organization theory, regulation
Oliver Hart and Bengt Holmstrom, Nobel Prize 2016

Holmstrom & Milgrom '85:
Principal-Agent problem more accessible in continuous time
Cvitani¢ & Zhang '12 (Book): calculus of variations...
Sannikov '08: continuation utility process, drift control
Cvitani¢, Possamai & NT '18: dynamic programming approach, finite horizon

Lin, Ren, Yang & NT '19: extension to random horizon ><mg
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Introduction: Principal-Agent problem  Risk sharing

Principal-Agent problem: continuous time formulation

Agent problem:

.
For £ € L°%(Q,R), V{'(€) = ;;‘E,]Ep[g(x)*/o ct(ut)dt]

P € P: weak solution of Output process for some v valued in U:

dXe = b(X,v:)dt + oo(X, ) dW; P—as.
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Introduction: Principal-Agent problem  Risk sharing

Principal-Agent problem: continuous time formulation

Agent problem:

For £ € LO(Q,R), V{'(6) = supEp[g(X)f/oTCt(l/t)dt}

PeP

P € P: weak solution of Output process for some v valued in U:

dXe = b(X,v:)dt + oo(X, ) dW; P—as.

Principal problem

| A

Given solution P*(£), Vo = sup EP®) [U(XT — g(X))}

where =, = {&(X): V§'(&) > p}

Extensions: random (possibly co) horizon, heterogeneous agents with possibly mean
field interaction, competing Principals... ><ggr3¢;mm
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Introduction: Principal-Agent problem  Continuous time Principal-Agent problem

Principal-Agent problem: continuous time formulation

Agent problem:

For £ € L°(Q,R), V4'(¢)

= sup ]EP[S(X)f/OTCt(Vt)dt]

PeP

P € P: weak solution of Output process for some v valued in U:

dXt = Ut(X,ﬁt)[At(X,at)dt—FthP:I P—a.s.
Principal problem
Given solution P*(¢), Vo = sup E* © [U(XT — g(X))}
==

where =, = {&(X): V§'(&) > p}

Extensions: random (possibly co) horizon, heterogeneous agents with possibly mean
field interaction, competing Principals... ><5%?§55?"¥'9“;%
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Introduction: Principal-Agent problem  General solution approach

Intuition from the Markov setting

If ¢ = g(X7), then V* = v(0, Xo) where v solution of HJB equation
Otv + H(Dv, D2v) =0, v’t:T =g

e Hamiltonian H(z,7) := sup,., {b(v) - z+ Soeo (u):v — ce(u) }
e optimal Agent response u* = i(Dv, D*v) maximizer of H
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Introduction: Principal-Agent problem  General solution approach

Intuition from the Markov setting

If £ = g(X7), then VA = v(0, X;) where v solution of HJB equation
Otv + H(Dv, D2v) =0, v’t:T =g

e Hamiltonian H(z,7) := sup,., {b(v) - z+ Soeo (u):v — ce(u) }
e optimal Agent response u* = i(Dv, D*v) maximizer of H

By Itd's formula, we may rewrite g(X7) = v(T, X7) as

g(Xr) = VA4 [T Dv(t, X)dXe + 1D?v(t. X.) 1 d(X)e + Qev(t, Xe)dt
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Introduction: Principal-Agent problem  General solution approach

Intuition from the Markov setting

If € = g(X7), then VA = v(0, Xo) where v solution of HJB equation
dev + H(Dv, D*v) =0, V’::T =g

e Hamiltonian H(z,7v) := sup,., {b(v) - z + Soeo (u):y — ce(u)}
e optimal Agent response u* = ii(Dv, D*v) maximizer of H

By Ité's formula, we may rewrite g(X7) = v(T, X7) as

g(Xr)

VA4 [T Du(t, X.)dXe + 3D?v(t, X.):d(X): — H(Dv, D*v)(t, X:)dt
= VA4 [T Z(t, X )dXe + IT(¢, X.) 1 d(X)e — H(Z.T)(t, X:)dt
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Introduction: Principal-Agent problem  General solution approach

Intuition from the Markov setting

If € = g(X7), then VA = v(0, Xo) where v solution of HJB equation
dev + H(Dv, D*v) =0, V’::T =g

e Hamiltonian H(z,7v) := sup,., {b(v) - z + Soeo (u):y — ce(u)}
e optimal Agent response u* = ii(Dv, D*v) maximizer of H

By Ité's formula, we may rewrite g(X7) = v(T, X7) as

g(Xr)

VA4 [T Du(t, X.)dXe + 3D?v(t, X.):d(X): — H(Dv, D*v)(t, X:)dt
= VA4 [T Z(t, X )dXe + IT(¢, X.) 1 d(X)e — H(Z.T)(t, X:)dt

= Principal problem (of optimal choice of g) reduces to

max maxE[U(¢(X7) — gVA‘Z"r(XT))]

VASp Z,T

where (Z,T) = (v, Dv), s.t. v solves HJB — difficult constraints...
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Introduction: Principal-Agent problem  General solution approach

A subset of revealing contracts

Path-dependent Hamiltonian for the Agent problem

1
Hi(w,z,v) := suB {be(w,u) -z + Eatoj(w, u):y — c(w, u)}
ue

For Yo € R, Z,T FX — prog meas, define P—a.s. for all P € P

t
1
YT =Y, +/ Z. - dX. + Ers - d(X)s — Hs(X, Zs,T.)ds
0
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Introduction: Principal-Agent problem  General solution approach

A subset of revealing contracts

Path-dependent Hamiltonian for the Agent problem

1
Hi(w,z,v) := SUB {be(w,u) -z + Eota:(w, u):y — ce(w, u)}
ue

For Yo € R, Z,T FX — prog meas, define P—a.s. for all P € P

t
1
YT =Y, +/ Z. - dX. + Ers - d(X)s — Hs(X, Zs,T.)ds
0

Proposition
V&' (YF") = Yo. Moreover P* is optimal iff

vi = Argmax Hy(Z;,Ty) = D(Z;, Ty)
uel

v
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Introduction: Principal-Agent problem  General solution approach

Proof: classical verification argument !

For all P € P, denote Ja(¢,P) := EF[¢ — [cVdt]. Then

T 1 TV
(Y P) = JEP[YO+/Ozt-dxt+§rt:d<x>ﬁHt(zprt)dt—/o c dt]
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Introduction: Principal-Agent problem  General solution approach

Proof: classical verification argument !

For all P € P, denote Ja(¢,P) := EF[¢ fo dt|. Then
.

T 1
(Y P) = JEP[YO+/zt-dxt+frt:d<x>ﬁHt(zprt)dt—/o c;’dt]

1
= Y0+EP/{b” Zi+ 2(7(7 Te— ¢ — H(Z,,T }dt
0
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Introduction: Principal-Agent problem  General solution approach

Proof: classical verification argument !

For all P € P, denote Ja(¢,P) := EF[¢ fo dt|. Then

T 1 T
(Y P) = JEP[YO+/Zt-dxt+frt:d<x>ﬁHt(zprt)dt—/o c;’dt]

1
Y0+E]P/{bll Zt + 20'0' rt — Ct — Ht Zz }dt
0

IN

Yo by definition of H
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Introduction: Principal-Agent problem  General solution approach

Proof: classical verification argument !

For all P € P, denote Ja(¢,P) := EF[¢ fo dt|. Then

T 1 T
W(YETR) = IEP[Y0+/Zf-dXt+7Ft:d<X>szt(Zt,Ft)dt—/o c;’dt]

1
YO+E]P/{bV Zt + 20'0' rt — Ct — Ht Zz }dt
0

IN

Yo by definition of H

with equality iff v = v maximizes the Hamiltonian
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Introduction: Principal-Agent problem  General solution approach

Principal problem restricted to revealing contracts

= Principal’s value function under revealing contracts

Ve > sup Vo(Xo, Vo), Vo(Xo, Yo) == sup E[U(XT = YTZ‘F)}
Yo>p (Zz,r)eyv

where )V = {(Z,F) : Z € H(P) and P*(YTZ'F) #+ (A}

and the dynamics of the pair (X, Y) under “optimal response”

dX; = be(X, (2, rt)) dt + o (x, (2., rt)) dw,

dY{" = Z, - dXe + 1T d{X): — He(X, Z¢, T)dt

(1 state augmented) controlled SDE with controls (Z.T)
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Introduction: Principal-Agent problem  General solution approach

Reduction to standard control problem

Theorem (Cvitani¢, Possamai & NT '15)
Assume V # (). Then

Vo = sup Vo(Xo, Yo)
Yo>p

Given maximizer Y;, the corresponding optimal controls (Z*,T*) induce an
optimal contract

T
1
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Introduction: Principal-Agent problem  General solution approach

Recall the subclass of contracts
t
1
YT =Y, +/ Zo-dXs + 5rs:d<><>s — Hy(X, YT, Z,,T.)ds
0

P—as. forallPe P
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Introduction: Principal-Agent problem  General solution approach

Recall the subclass of contracts
t
1
YT =Y, +/ Zo-dXs + 5rs:d<><>s — Hy(X, YT, Z,,T.)ds
0

P—as. forallPe P

To prove the main result, it suffices to prove the representation

forall € €?? 3(Yp,Z,T) st. £E=YF' P—as forall PeP
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Introduction: Principal-Agent problem  General solution approach

Recall the subclass of contracts
t
1
YT =Y, +/ Zo-dXs + 5rs:d<><>s — Hy(X, YT, Z,,T.)ds
0

P—as. forallPe P

To prove the main result, it suffices to prove the representation

forall € €?? 3(Yp,Z,T) st. £E=YF' P—as forall PeP

OR, weaker sufficient condition:

forall € €77 3(Yg,Z",T") st “YE T —¢
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Platform mechanism design = Model formulation

Trading Makers-Takers fees... towards Fintech

Nizar Touzi (X)

Makers & Takers

The SEC is scrutinizing a common practice where exchanges pay
some stock-market players rebates and charge fees to others.

Here’s how it works:
|’ P ’

A high-frequency trading firm A broker for a mutual fund
offers to sell 100 shares of XYZ buys 100 shares of XYZ for
stock for $10.02 a share and buy $10.02.

at $10.00 a share.

The high-frequency trader
is paid 256 because his sell

B e eined makeihe The fund’s broker must

trade take place. pay the exchange 30¢
because he took an

The exchange keeps available order.

the difference of 5¢. —[ ]

Source: WSJ staff reports The Wall Street Journal

Control of interactin tems and incentives
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Platform mechanism design = Model formulation

Market makers, and brokers trading
e Fundamental price {P;}>0: dPy = odW,

e Market Maker sets bid-ask prices p? = P, — 6° and p? = P; + §?

e N2 NZ: # trades, unit jump point process with intensities

AP = A(60) and A2 = A(69), with A(x) = Ae = (<te)

= MM inventory Q; = Nf — N7, where

a
Nr=6
MM sells L]
pa=P+§a_ at prige p?
alo 121 |2 1 o al o] 1 2 1
Spread:
S'D:pa_pb P o=
NS =5
MM Huys —
at prite p°|
pbzP-ﬁb-
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Platform mechanism design = Model formulation

Market makers, and brokers trading

MM and Platform have constant absolute risk aversion
UA(X) = —e X, UP(X) = —e

e MM chooses bid and ask prices:

-
Va€) = sup E°Ua (é +/ pidNg — pPdNy + QTPT)
6=(6b,62)

e Given optimal response 6*(¢), Platform chooses optimal contract

Ve = sup E* O Up(—&+ c(NF + NE))
EE=R

c: fee paid by broker = ¢ affects the arrival process...

Avellaneda & Stoikov '08 corresponds to £ =0 X

Nizar Touzi (X) Control of interacting systems and incentives Paris, January 31, 2020 18 /34



Platform mechanism design ~ Main results

Optimal MM compensation

Let

u(t,q) = Z [G(T = o) z [G(T = o)} o~ Q(T=t)(a+j—p)?

Lijgtj-pl<a
| A q+j—p|<q}s
p=>0 P Jj=0 J:

with constants Ci, C{. Then,

Optimal contract is

£ = U;l(R)+/ Z2dN? + ZPdNE + ZF dp,
0

—s—(%VUQ(ZP + @) - H(Z, Qt)) dt

where ZP = n:; Q:: inventory risk sharing

and ZZC-&-%[M (%) —Co], i=b,a ep=1, e,=-1,

=—log (1 - —~t——
G & 1+ 0+ 5 K oo

Nizar Touzi (X)
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Platform mechanism design ~ Numerical implementation

Effect of the exchange optimal incentive policy

Parameters values from Guéant, Lehalle and Fernandez-Tapia:

T =600s, o=0.3Ticks 2, A=09s"' k=03s"%2
g = 50 unities, ~ =0.01Tick™%, 7 =1Tick™ !, ¢ =0.5Tick.
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Platform mechanism design ~ Numerical implementation

Impact of the incentive policy on the spread
The optimal spread is given by S = 3\? + Sf with

S SR i 1 o .
3 = 8i(6) = Zt—&—’ylog(l—&— k), i=ab

Incentive contract induces spread to be cut by half )

18

16
— Incentive exchange model

Neutral exchange model

Spread (in Ticks)

12

10

-0 -3 -20 -10 0 0 20 30 40
Initial inventory

Optimal initial spread with/without the exchange incentive policy
in terms of initial inventory Qo. ><’°l1'5?,"!"9“5

21/34
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Platform mechanism design ~ Numerical implementation

Impact of the incentive policy on the spread

Incentive contract induces bid and ask spreads to be cut by half J

— Incentive exchange model — Incentive exchange model
25 Neutral exchange model 25 Neutral exchange model
2.0 2.0
2 15 L o1s
F £
£ £
5 10 5 10
H S
1 o
a a
@05 w05
2 u
@ <
0.0 0.0
-0.5 -0.5
—40 —20 ) 20 40 —40 -20 o 20 40
Initial inventory Initial inventory

Optimal initial bid (left) and ask (right) spread component
with /without the exchange incentive policy
in terms of initial inventory Qo. X
I3 E%?VLEECHNI’QU‘E’
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Platform mechanism design ~ Numerical implementation

Impact of the volatility on the incentive policy

Incentive contract effect decreases with volatility... J

Spread difference (in Ticks)

0 5 10 15 20 25 30
Volatility

Initial optimal spread difference (with/without incentive)
in terms of the volatility o. XE%%CHWE
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Platform mechanism design ~ Numerical implementation

Regulation implication: how to choose the constant fee ¢

PP =P+s

Spread:
S=pP-¢

PP =pP-s

Bid-ask spread §t is explicit...

Assume Exchange fixes the transaction cost ¢ so that gt =1

Then, we compute that
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Impact of the incentive policy on the market liquidity

# transactions = N + N&

Incentive contract induces more transactions...

700 { — Neutral exchange model
Incentive exchange model
600

500 4

400

Order flow

300 4

2004

100 4

0 100 200 300 400 500 600
Time

Average order flow with 95% confidence interval
with /without incentive policy (5000 scenarios). ><5%?iﬁgguy.9u5
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Impact of the incentive policy on the platform P&L

— Neutral exchange model
Incentive exchange model

200 o

100 4

—100 1

—200

Profit and loss of the exchange

-300 4

—400 |

0 100 200 300 400 500 600
Time

platform P&L with 95% confidence interval
with /without incentive policy (5000 scenarios). ><5‘é?i&guy.9u5
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Platform mechanism design ~ Numerical implementation

Impact of the incentive policy on the market maker and
exchange profit and loss

—— Neutral exchange model
Incentive exchange model

~
=}
=]

@
=3
S

o]
=]
=]

&
S
=

w
=]
=]

N
=3
S

"
=]
=]

o

Profit and loss of the market maker and the exchange

o] 100 200 300 400 500 600
Time

Aggregate P&L of MM and exchange with 95% confidence interval
with /without incentive policy (5000 scenarios).
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Platform mechanism design ~ Numerical implementation

Impact of the incentive policy on trading costs

e One market taker buying a fixed quantity Qfinar = 200 shares

0 T < o a . o
trading cost [, d2dNZ. with or without incentive

Incentive contract decreases significantly the average trading cost

— Neutral exchange model
Incentive exchange model

Trading cost

o 100 200 300 400 500 600
Time

Average trading cost with 95% confidence interval
with /without incentive policy (5000 scenarios). ><ECOLE
I3 POl‘iTE(VZVH!‘II’QyU:E’

Nizar Touzi (X) Control of interacting systems and incentives Paris, January 31, 2020 28 /34



Platform mechanism design ~ Numerical implementation

Summarizing the benefits from optimal contracting

Benefits of the exchange incentive policy

Smaller spread.
Increase of the market liquidity.

Increase of the profit and loss of the MM and the exchange.

Less transaction costs.
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Multiple interacting Symmetric Principals

Symmetric platforms in Nash equilibrium

1 Market maker
facing n symmetric platforms
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Multiple interacting Symmetric Principals

Symmetric platforms in Nash equilibrium

e MM chooses bid and ask prices:

.
Va(€) = sup E‘SUA(H/ Pdea—Pthb—i—QrPT)
5=(6%,67) 0

where £ =& + ...+ &,

Given optimal response 6*(¢), Platform i chooses optimal contract ¢;, given

5 JFi &

Ve = sup ETEHOUp (g (N"’+NT))
516 R(E)

— Optimal contract £;(€)... independent of i
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Multiple interacting Symmetric Principals

Symmetric platforms in Nash equilibrium

Nash Equilibrium

(&1,-.-,&n) is a Nash equilibrium if

& (X&) =6 forall i=1,....n
A Nash equilibrium (&1, ...,&,) is symmetric if & = --- =&,

For a symmetric Nash equilibrium, we must solve
& ((n=1)&) =&

If 50 defines a symmetric Nash equilibrium, then the Market maker receives the
total payment 5(” = nfo
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Optimal MM compensation

Let

C(T —t)]P CUAT =W Tt orip?
“"(t7q):Z[ (p! ! Z[ (j! ) e Tm0leme) Ligti—pl<a)

p>0 j=>0
with constants

ko , / (n—1
Cn = A~ n 1V Cn:Cl(aaﬂ)e
25 +7)

s (L+n2)+5
(1+2)+8

1

and a ;= GL7 B = O’LT], Ci(a, B) ::A5(1+$)7Q(1—m>1+ﬁ
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Multiple interacting Symmetric Principals

Optimal MM compensation: main result

Theorem

There exists a unique symmetric Nash equilibrium with optimal contract
T o~ o~ o~
& = U'R) + / Z7dN; + ZPPdN + 207 dP,
0
1 Sn Sn
+(§’VU2(Z{P ar Qt)2 — H(Z/, Qt)) dt

Z"’P = —"L Q;: inventory risk sharing — —Q: (Selling firm effect)

nEny n—co

and Z””:c—&-%[ln (L@))) —Co}, i=ba ep=1, ¢, =—1,

un(t, Qe + &
XECOLE
/ POL!'E(,:,H!‘",Q,“},
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