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Make-Take Fees and Contact Theory

Trading Makers-Takers fees... towards Fintech
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Introduction: Principal-Agent problem Risk sharing

Delegation problem: accounting for moral hazard

X : value of an output process owned by Principal
Agent devotes effort a, thus impacting distribution of X =⇒ X a

cost of effort c(a)

compensation ξ : contract

Choose ξ so that Agent devotes effort in the interest of Principal
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Introduction: Principal-Agent problem Risk sharing

Second best contracting: Principal-Agent Problem

• Principal delegates management of output process X ,
only observes X
pays salary defined by contract ξ(X )

• Agent devotes effort a =⇒ X a, chooses optimal effort by

VA(ξ) := max
a

EUA

(
ξ(X a)− c(a)

)
=⇒ â(ξ)

• Principal chooses optimal contract by solving

max
ξ

EUP

(
X â(ξ) − ξ(X â(ξ))

)
under constraint VA(ξ) ≥ R

Non-zero sum Stackelberg game

Difficult to solve, and so restrict to affine contracts...
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=⇒ â(ξ)

• Principal chooses optimal contract by solving

max
ξ

EUP

(
X â(ξ) − ξ(X â(ξ))
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Introduction: Principal-Agent problem Risk sharing

Contract theory at the heart of modern economic theory

Jean Tirole, Nobel Prize 2014: organization theory, regulation

Oliver Hart and Bengt Holmström, Nobel Prize 2016

Holmström & Milgrom ’85:

Principal-Agent problem more accessible in continuous time

Cvitanić & Zhang ’12 (Book): calculus of variations...

Sannikov ’08: continuation utility process, drift control

Cvitanić, Possamäı & NT ’18: dynamic programming approach, finite horizon

Lin, Ren, Yang & NT ’19: extension to random horizon
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Introduction: Principal-Agent problem Risk sharing

Principal-Agent problem: continuous time formulation

Agent problem:

For ξ ∈ L0(Ω,R), V A
0 (ξ) := sup

P∈P
EP
[
ξ(X )−

∫ T

0

ct(νt)dt
]

P ∈ P: weak solution of Output process for some ν valued in U:

dXt = bt(X , νt)dt + σt(X , νt)dW P
t P− a.s.

Principal problem

Given solution P∗(ξ), V P
0 := sup

ξ∈Ξρ

E P∗(ξ)
[
U
(
XT − ξ(X )

)]
where Ξρ :=

{
ξ(X.) : V A

0 (ξ) ≥ ρ
}

Extensions: random (possibly ∞) horizon, heterogeneous agents with possibly mean

field interaction, competing Principals...
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Introduction: Principal-Agent problem Continuous time Principal-Agent problem

Principal-Agent problem: continuous time formulation

Agent problem:

For ξ ∈ L0(Ω,R), V A
0 (ξ) := sup

P∈P
EP
[
ξ(X )−

∫ T

0

ct(νt)dt
]

P ∈ P: weak solution of Output process for some ν valued in U:

dXt = σt(X , βt)
[
λt(X , αt)dt + dW P

t

]
P− a.s.

Principal problem

Given solution P∗(ξ), V P
0 := sup

ξ∈Ξρ

E P∗(ξ)
[
U
(
XT − ξ(X )

)]
where Ξρ :=

{
ξ(X.) : V A

0 (ξ) ≥ ρ
}

Extensions: random (possibly ∞) horizon, heterogeneous agents with possibly mean

field interaction, competing Principals...
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Introduction: Principal-Agent problem General solution approach

Intuition from the Markov setting

If ξ = g(XT ), then V A = v(0,X0) where v solution of HJB equation

∂tv + H(Dv ,D2v) = 0, v
∣∣

t=T
= g

• Hamiltonian H(z , γ) := supu∈U

{
b(u) · z + 1

2
σtσ
>
t (u) :γ − ct(u)

}
• optimal Agent response u∗ = û(Dv ,D2v) maximizer of H

By Itô’s formula, we may rewrite g(XT ) = v(T ,XT ) as

g(XT ) = V A +
∫ T

0
Dv(t,Xt)dXt + 1

2
D2v(t,Xt) :d〈X 〉t + ∂tv(t,Xt)dt

= V A +
∫ T

0
Z(t,Xt)dXt + 1

2
Γ(t,Xt) :d〈X 〉t − H(Z , Γ)(t,Xt)dt

So Principal problem reduces to

max
V A≥ρ

max
Z ,Γ

E[U(`(XT )− gV A,Z ,Γ(XT ))]

where (Z , Γ) = (v ,Dv), s.t. v solves HJB =⇒ difficult constraints...
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By Itô’s formula, we may rewrite g(XT ) = v(T ,XT ) as

g(XT ) = V A +
∫ T

0
Dv(t,Xt)dXt + 1

2
D2v(t,Xt) :d〈X 〉t − H(Dv ,D2v)(t,Xt)dt

= V A +
∫ T

0
Z(t,Xt)dXt + 1

2
Γ(t,Xt) :d〈X 〉t − H(Z , Γ)(t,Xt)dt

=⇒ Principal problem (of optimal choice of g) reduces to

max
V A≥ρ

max
Z ,Γ

E
[
U
(
`(XT )− gV A,Z ,Γ(XT )

)]
where (Z , Γ) = (v ,Dv), s.t. v solves HJB =⇒ difficult constraints...

Nizar Touzi (X) Control of interacting systems and incentives Paris, January 31, 2020 10 / 34



11/34

Introduction: Principal-Agent problem General solution approach

A subset of revealing contracts

Path-dependent Hamiltonian for the Agent problem

Ht(ω, z , γ) := sup
u∈U

{
bt(ω, u) · z +

1

2
σtσ
>
t (ω, u) :γ − ct(ω, u)

}
For Y0 ∈ R, Z , Γ FX − prog meas, define P−a.s. for all P ∈ P

Y Z ,Γ
t = Y0 +

∫ t

0

Zs · dXs +
1

2
Γs : d〈X 〉s − Hs(X ,Zs , Γs)ds

Proposition

V A
0

(
Y Z ,Γ

T

)
= Y0. Moreover P∗ is optimal iff

ν∗t = Argmax
u∈U

Ht(Zt , Γt) = ν̂(Zt , Γt)
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Introduction: Principal-Agent problem General solution approach

Proof: classical verification argument !

For all P ∈ P, denote JA(ξ,P) := EP[ξ − ∫ T

0
cνt dt

]
. Then

JA

(
Y Z ,Γ

T ,P
)

= EP
[
Y0 +

∫ T

0

Zt ·dXt +
1

2
Γt:d〈X 〉t−Ht(Zt , Γt)dt −

∫ T

0

cνt dt
]

= Y0 +EP
∫ T

0

{
bνt ·Zt +

1

2
σσ>:Γt − cνt − Ht(Zt , Γt)

}
dt+Zt ·σνt dW P

t

≤ Y0 by definition of H

with equality iff ν = ν∗ maximizes the Hamiltonian
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Introduction: Principal-Agent problem General solution approach

Principal problem restricted to revealing contracts

=⇒ Principal’s value function under revealing contracts

V P
0 ≥ sup

Y0≥ρ
V0(X0,Y0), V0(X0,Y0) := sup

(Z ,Γ)∈V
E
[
U
(
XT − Y Z ,Γ

T

)]
where V :=

{
(Z , Γ) : Z ∈ H2(P) and P∗

(
Y Z ,Γ

T

)
6= ∅
}

and the dynamics of the pair (X ,Y ) under “optimal response”

dXt = bt

(
X , ν̂(Zt , Γt)

)
dt + σt

(
X , ν̂(Zt , Γt)

)
dWt

dY Z ,Γ
t = Zt · dXt + 1

2 Γt : d〈X 〉t − Ht(X ,Zt , Γt)dt

(1 state augmented) controlled SDE with controls (Z , Γ)
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Introduction: Principal-Agent problem General solution approach

Reduction to standard control problem

Theorem (Cvitanić, Possamäı & NT ’15)

Assume V 6= ∅. Then

V P
0 = sup

Y0≥ρ
V0(X0,Y0)

Given maximizer Y ∗0 , the corresponding optimal controls (Z∗, Γ∗) induce an
optimal contract

ξ∗ = Y ∗0 +

∫ T

0

Z∗t · dXt +
1

2
Γ∗t : d〈X 〉t − Ht(X ,Z∗t , Γ

∗
t )dt

Nizar Touzi (X) Control of interacting systems and incentives Paris, January 31, 2020 14 / 34



15/34

Introduction: Principal-Agent problem General solution approach

Recall the subclass of contracts

Y Z ,Γ
t = Y0 +

∫ t

0

Zs · dXs +
1

2
Γs :d〈X 〉s − Hs(X ,Y Z ,Γ

s ,Zs , Γs)ds

P− a.s. for all P ∈ P

To prove the main result, it suffices to prove the representation

for all ξ ∈?? ∃ (Y0,Z , Γ) s.t. ξ = Y Z ,Γ
T , P− a.s. for all P ∈ P

OR, weaker sufficient condition:

for all ξ ∈?? ∃ (Y n
0 ,Z

n, Γn) s.t. “Y Z n,Γn

T −→ ξ”
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Platform mechanism design Model formulation

Trading Makers-Takers fees... towards Fintech
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Platform mechanism design Model formulation

Market makers, and brokers trading
• Fundamental price {Pt}t≥0: dPt = σdWt

•Market Maker sets bid-ask prices pb
t = Pt − δb

t and pa
t = Pt + δa

t

• Nb
t ,N

a
t : # trades, unit jump point process with intensities

λb
t = λ(δb

t ) and λa
t = λ(δa

t ), with λ(x) = Ae−
k
σ (x+c)

=⇒ MM inventory Qt = Nb
t − Na

t , where
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Platform mechanism design Model formulation

Market makers, and brokers trading

MM and Platform have constant absolute risk aversion

UA(x) = −e−γx , UP (x) = −e−ηx

• MM chooses bid and ask prices:

VA(ξ) := sup
δ=(δb,δa)

E δUA

(
ξ +

∫ T

0

pa
t dN

a
t − pb

t dN
b
t + QTPT

)
• Given optimal response δ∗(ξ), Platform chooses optimal contract

VP = sup
ξ∈ΞR

E δ∗(ξ)UP

(
−ξ + c(Na

T + Nb
T )
)

c: fee paid by broker =⇒ c affects the arrival process...

Avellaneda & Stoikov ’08 corresponds to ξ = 0
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Platform mechanism design Main results

Optimal MM compensation

Let

u(t, q) =
∑
p≥0

[C ′1(T − t)]p

p!

∑
j≥0

[C ′1(T − t)]j

j!
e−C1(T−t)(q+j−p)2

1{|q+j−p|≤q̄},

with constants C1,C
′
1. Then,

Optimal contract is

ξ̂ = U−1
A (R) +

∫ T

0

Ẑ a
t dN

a
t + Ẑ b

t dN
b
t + ẐP

t dPt

+
(1

2
γσ2(ẐP

t + Qt

)2 − H(Ẑt ,Qt)
)
dt

where ẐP
t = −γ

η+γ
Qt : inventory risk sharing

and Ẑ i
t = c +

1

η

[
ln
( u(t,Qt)

u(t,Qt + εi )

)
− ζ0

]
, i = b, a, εb = 1, εa = −1,

ζ0 := − log
(

1− 1

(1+ k
σγ

)(1+ k
ση

)

)
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Platform mechanism design Numerical implementation

Effect of the exchange optimal incentive policy

Parameters values from Guéant, Lehalle and Fernandez-Tapia:

T = 600s, σ = 0.3Tick.s−1/2, A = 0.9s−1, k = 0.3s−1/2,

q̄ = 50 unities, γ = 0.01Tick−1, η = 1Tick−1, c = 0.5Tick.
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Platform mechanism design Numerical implementation

Impact of the incentive policy on the spread
The optimal spread is given by Ŝt = δ̂a

t + δ̂b
t with

δ̂i
t = δi

t(ξ̂) = −Ẑ i
t +

1

γ
log
(

1 +
σγ

k

)
, i = a, b

Incentive contract induces spread to be cut by half

Optimal initial spread with/without the exchange incentive policy
in terms of initial inventory Q0.
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Platform mechanism design Numerical implementation

Impact of the incentive policy on the spread

Incentive contract induces bid and ask spreads to be cut by half

Optimal initial bid (left) and ask (right) spread component
with/without the exchange incentive policy

in terms of initial inventory Q0.
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Platform mechanism design Numerical implementation

Impact of the volatility on the incentive policy

Incentive contract effect decreases with volatility...

Initial optimal spread difference (with/without incentive)

in terms of the volatility σ.
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Platform mechanism design Numerical implementation

Regulation implication: how to choose the constant fee c

Bid-ask spread Ŝt is explicit...

Assume Exchange fixes the transaction cost c so that Ŝt = 1

Then, we compute that

c ≈ σ

k
− 1

2
Tick
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Platform mechanism design Numerical implementation

Impact of the incentive policy on the market liquidity

# transactions = Na
T + Nb

T

Incentive contract induces more transactions...

Average order flow with 95% confidence interval

with/without incentive policy (5000 scenarios).

Nizar Touzi (X) Control of interacting systems and incentives Paris, January 31, 2020 25 / 34



26/34

Platform mechanism design Numerical implementation

Impact of the incentive policy on the platform P&L

−ξ̂ + c(Na
T + Nb

T )

platform P&L with 95% confidence interval

with/without incentive policy (5000 scenarios).
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Platform mechanism design Numerical implementation

Impact of the incentive policy on the market maker and
exchange profit and loss

Aggregate P&L of MM and exchange with 95% confidence interval

with/without incentive policy (5000 scenarios).
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Platform mechanism design Numerical implementation

Impact of the incentive policy on trading costs

• One market taker buying a fixed quantity Qfinal = 200 shares

trading cost
∫ T

0
δa

s dN
a
s . with or without incentive

Incentive contract decreases significantly the average trading cost

Average trading cost with 95% confidence interval

with/without incentive policy (5000 scenarios).
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Platform mechanism design Numerical implementation

Summarizing the benefits from optimal contracting

Benefits of the exchange incentive policy

Smaller spread.

Increase of the market liquidity.

Increase of the profit and loss of the MM and the exchange.

Less transaction costs.
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Multiple interacting Symmetric Principals

Symmetric platforms in Nash equilibrium

1 Market maker

facing n symmetric platforms
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Multiple interacting Symmetric Principals

Symmetric platforms in Nash equilibrium

• MM chooses bid and ask prices:

VA(ξ) := sup
δ=(δb,δa)

E δUA

(
ξ +

∫ T

0

pa
t dN

a
t − pb

t dN
b
t + QTPT

)
where ξ = ξ1 + . . .+ ξn

• Given optimal response δ∗(ξ), Platform i chooses optimal contract ξi , given
ξ̃ :=

∑
j 6=i ξj :

VP = sup
ξi∈ΞR (ξ̃)

E δ∗(ξi +ξ̃)UP

(
−ξi +

c

n
(Na

T + Nb
T )
)

=⇒ Optimal contract ξ∗0 (ξ̃)... independent of i
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Multiple interacting Symmetric Principals

Symmetric platforms in Nash equilibrium

Nash Equilibrium

(ξ1, . . . , ξn) is a Nash equilibrium if

ξ∗0
(∑

j 6=i ξj

)
= ξi , for all i = 1, . . . , n

A Nash equilibrium (ξ1, . . . , ξn) is symmetric if ξ1 = · · · = ξn

For a symmetric Nash equilibrium, we must solve

ξ∗0
(
(n − 1)ξ0

)
= ξ0

If ξ̂0 defines a symmetric Nash equilibrium, then the Market maker receives the
total payment ξ̂(n) := nξ̂0.
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Multiple interacting Symmetric Principals

Optimal MM compensation

Let

un(t, q) =
∑
p≥0

[C ′n(T − t)]p

p!

∑
j≥0

[C ′n(T − t)]j

j!
e−Cn(T−t)(q+j−p)2

1{|q+j−p|≤q̄}

with constants

Cn =
kσ

2( n
η

+ 1
γ

)
, C ′n = C ′1(α, β)e(n−1)β (1 + n β

α
) + β

(1 + β
α

) + β

and α :=
k

σγ
, β :=

k

ση
, C ′1(α, β) := Aβ

(
1 +

1

α

)−α(
1− 1

(1 + α)(1 + β)

)1+β

Nizar Touzi (X) Control of interacting systems and incentives Paris, January 31, 2020 33 / 34



34/34

Multiple interacting Symmetric Principals

Optimal MM compensation: main result

Theorem
There exists a unique symmetric Nash equilibrium with optimal contract

ξ̂(n) = U−1
A (R) +

∫ T

0

Ẑ n,a
t dNa

t + Ẑ n,b
t dNb

t + Ẑ n,P
t dPt

+
(1

2
γσ2(Ẑ n,P

t + Qt

)2 − H(Ẑ n
t ,Qt)

)
dt

Ẑ n,P
t = −nγ

η+nγ
Qt : inventory risk sharing −→

n→∞
−Qt (Selling firm effect)

and Ẑ n,i
t = c +

n

η

[
ln
( un(t,Qt)

un(t,Qt + εi )

)
− ζ0

]
, i = b, a εb = 1, εa = −1,

Nizar Touzi (X) Control of interacting systems and incentives Paris, January 31, 2020 34 / 34


	Make-Take Fees and Contact Theory
	Introduction: Principal-Agent problem
	Risk sharing
	Continuous time Principal-Agent problem
	General solution approach

	Platform mechanism design
	Model formulation
	Model formulation
	Main results
	Numerical implementation

	Multiple interacting Symmetric Principals

