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Idea in a nutshell

Let me tell you where we are heading to...

I We observe an i.i.d. sample, where every element is a path/evolution of some
process of interest (asset price process, LOB, volatility surface, audio data,...)

I We want to understand the distribution underlying the sample

I We want to train a generator to:

• generate new real-looking samples (e.g. to extend the available data set for
training and evaluation of trading strategies)

• predict the evolution of the path given that we observe part of it

I For this we use some dynamic modification of GANs
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Generative Adversarial Networks

Generative: train a Generator G to learn data distribution from an i.i.d. sample
of observations (training data)

Adversarial: set a Discriminator D against G, to stimulate G to do a better job

In a loop, we train: G to generate real-looking samples, and
D to recognize whether an element comes from real data

or is fake (generated by G).

G and D compete with each other, which drives both of them to improve, until the
generated samples are indistinguishable from the genuine data (zero-sum game).

� real
↘

D → �/♦
↗

latent → G → ♦ fake
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Generative Adversarial Networks

training data {x i}Ni=1 on X , empirical distribution µ = 1
N

∑N
i=1 δx i

latent space Z, dim(Z) � dim(X ), noise distribution ζ ∈ P(Z)

gθ : Z → X generates samples, νθ = gθ#ζ ∈ P(X ) (cf. µ)

fϕ : X → [0, 1] outputs high value if D believes input likely to be real

Problem formulation in original GANs (Goodfellows et al. 2014):

inf
θ

sup
ϕ

{
Ex∼µ[ln fϕ(x)] + Ez∼ζ [ln(1− fϕ(gθ(z)))]

}
D: learn fϕ (via NN) s.t. fϕ(real) ∼ 1, fϕ(fake) ∼ 0

G: learn decoding map gθ (via NN) to maximally confuse D
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Generative Adversarial Networks

Why not Maximum Likelihood Estimation?

Density fitting: dνθ(x) = pθ(x)dx

MLE: supθ
1
N

∑N
i=1 ln pθ(x i ) ←→ infθ H(µ|νθ), where H(.|.) relative entropy

But νθ has no density in X , supports of νθ and µ may even be non-overlapping
(MLE not well defined)

⇒ look for a more flexible discrepancy to compare µ and νθ. Use a metric that can
handle measures with non-overlapping supports.
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Generative Adversarial Networks: moving on

Problems (with original GANs):

Continuity w.r.t. parameters

Convergence

Stability

Some ways out:

Gradient-based regularizations

D calculates some other divergence between µ and ν: Integral Probability Metrics,
Maximum Mean Discrepancy, Wasserstein distance, energy distance

Example: Wasserstein distance W1(µ, νθ) = inf{Eπ[‖x − y‖] : π1 = µ, π2 = νθ}

=⇒ inf
θ︸︷︷︸
G

W1(µ, νθ)︸ ︷︷ ︸
D
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Wasserstein GANs (Arjovsky et al., Gulrajani et al. 2017)

Dual formulation of the Wasserstein distance:

W1(µ, νθ) = sup
f Lip1

{Eµ[f ]− Eνθ [f ]}

→ enforce Lip constraint via gradient penalization (easier and regularized)

inf
θ

sup
ϕ

¶
Eµ[fϕ(x)]− Eνθ [fϕ(y)] + Lip. penalization

©
Continuity: if θ 7→ gθ cont. ⇒ θ 7→ W1(µ, νθ) cont.

Convergence: WGANs converge if D always trained till optimality

WGANs outperform MLE and MLE-NN unless exact parametric form of data is
known
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Sinkhorn Divergences (Genevay, Peyré and Cuturi 2017)

→ Genevay et al. suggest to consider the primal formulation: numerically more stable (in
the dual, gradient requires differentiating the potential:difficult to compute, unstable)

GANs: continuity w.r.t. g ×, convergence ×, stability ×
WGANs (Optimal Transport):

↪→ dual OT (Arjovsky et al. 2017, Gulrajani et al. 2017)

continuity X, convergence X, stability ×
↪→ primal OT (Genevay, Peyré, Cuturi 2017)

continuity X, convergence X, stability X

→ We consider a dynamic framework: to generate paths (data = time series)

• we mimic primal OT approach by Genevay et al.

• we need a good distance for sequential data
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Classical Monge-Kantorovich Optimal Transport

Given Polish probability spaces (X , µ), (Y, ν), move the mass from µ to ν minimizing
the cost of transportation c : X × Y → [0,∞]:

OT(µ, ν, c) := inf {Eπ[c(x , y)] : π ∈ Π(µ, ν)} ,

where Π(µ, ν) probability measures on X × Y with marginals µ and ν

e.g. X = Y = Rd , c(x , y) = ‖x − y‖ → Wasserstein distance

→ Dynamic framework (e.g. X = Y = Rd×T ) something that evolves in time:
“move distribution of a process X into distribution of a process Y ”
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Causal Optimal Transport

→ What is a good distance in a dynamic framework?

→ Idea: move the mass in a non-anticipative way (Y is X−adapted, modulo external
randomization)

→ Mathematically: π ∈ P(Rd×T × Rd×T ) is causal if

π(dyt |dx1, · · · , dxT ) = π(dyt |dx1, · · · , dxt) ∀t

Causal Optimal Transport problem:

COT(µ, ν, c) := inf
¶
Eπ[c(X ,Y )] : π ∈ Πcausal(µ, ν)

©
,

where Πcausal(µ, ν) = {π ∈ Π(µ, ν) : π causal}
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Dynamic Generative Adversarial Networks via COT

Our approach:

We want to train a generator to produce sequential data

We build some modification of GAN where D computes distance between the real
distribution µ and the generated distribution νθ via causal optimal transport

Inspired by Genevay, Peyré and Cuturi, we consider the primal COT problem and
add an entropic regularization → Sinkhorn algorithm

Causality provides a family of cost functions → D computes the worst case OT
distance w.r.t. these cost functions (D is learning the cost function)
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Dynamic Generative Adversarial Networks via COT

1. We regularize the causal transport:

COTε(µ, ν, c) := inf
π∈Πcausal(µ,ν)

¶
Eπ[c(x , y)] + εH(π|µ⊗ ν)

©
,

COTε(µ, ν, c) −−−→
ε→0

COT(µ, ν, c) (A., Backhoff, Jia 2020)

2. We dualize the causality constraint, and obtain:

COTε(µ, ν, c) = sup
s∈S

OTε(µ, ν, c + s)

3. We remove the bias → Sinkhorn divergence:

Wc+s,ε(µ, ν) := OTε(µ, ν, c + s)− 1
2OTε(µ, µ, c + s)− 1

2OTε(ν, ν, c + s)
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Dynamic Generative Adversarial Networks via COT

Causal Wasserstein GAN:

inf
θ

sup
ϕ
Wcϕ,ε(µ, νθ)

→ D learns cϕ, that is, the cost function (worst-case distance)

→ G learns νθ, that is, the best generating function gθ (νθ = gθ#ζ)

the cost functions cϕ are of the form appearing in the dualization of causality

ϕ ad θ learned through “dynamic architectures”, such as Recurrent Neural
Networks and Convolutionals Neural Networks
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Training architecture: example

Basic Recurrent Neural Network

y1 y2 · · · yT

output yt © © © · · · ©

↑ ↑ ↑ ↑

hidden © −−−−→
unfold

© → © → · · · → ©
layer ht h1 h2 · · · hT

↑ ↑ ↑ ↑
input zt © © © · · · ©

z1 z2 · · · zT

ht = σ(Azt + Bht−1 + a) network memory, σ activation functions

yt = Cst , θ = {A,B,C , a} parameters: weight matrices and bias vectors
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The algorithm

To solve the min-max problem, we approximate Wcϕ,ε(µ, νθ):

sample mini-batches from real data and from latent space ↪→ emp.distr. µ̂, ν̂θ

penalize cost functions cϕ = c + s for which s /∈ S

compute inf
π∈Π(µ̂,ν̂θ)

{
Eπ[cϕ] + εH(π|µ̂⊗ ν̂θ)

}
by Sinkhorn algorithm (Cuturi

2013), by considering a pre-determined # iterations

⇒ Ŵcϕ,ε(µ̂, ν̂θ)

Use stochastic Gradient Ascent/Descent to update parameters:

ϕn+1 = ϕn + α∇ϕŴcϕ,ε(µ̂, ν̂θ)

θn+1 = θn − α∇θŴcϕ,ε(µ̂, ν̂θ)
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Pseudo-code

Data: θ0, ϕ0, {x i}Ni=1, ζ, ε, batch size m, Sinkhorn iter., learning rate α, critic iter. nc
Result: θ, ϕ
θ ← θ0, ϕ← ϕ0

for k = 1, 2, . . . do
for l = 1, 2, . . . , nc do

Sample: {x i}mi=1 from real data, and {z i}mi=1 from ζ

y i ← gθ(z i )

ϕ← ϕ+ α∇ϕ
(
Ŵcϕ,ε(µ̂, ν̂θ)

)
end

Sample: {x i}mi=1 from real data, and {z i}mi=1 from ζ

y i ← gθ(z i )

θ ← θ − α∇θ
(
Ŵcϕ,ε(µ̂, ν̂θ)

)
end
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Prediction rather than generation

→ Causal Wasserstein GANs: learn how to generate real-looking evolutions given
an observed dataset.

→ WIP: develop a conditional modification of the algorithm, for time-series trend
prediction, so that we feed the beginning of a sequence and the generator
produces some reasonable continuation.

Mathematically: easy modification

But may require different choice of architectures
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Applications

Initial testing:

We have been testing some easy-to check features on simulated data, e.g.
reproducing periodic curves.

Now we are testing on standard datasets, such as audio datasets (NSynth); and
MNIST (yes, I know, not truly sequential..)

Financial applications: data-driven model-independent analysis

Robust pricing of financial derivatives

Volatility prediction

Prediction of evolution of LOB
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Applications

As we are still working on the audio / financial applications - and since I cannot finish
such a talk without showing something we generated...

1 iteration 300 iterations 15k iterations 40k iterations
(1.1 sec) (4.5 min) (5h) (14h)

MNIST: batch size 32, critic 1, ε = 0.8, Sinkhorn iter. 30, learning rate 0.0001
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Thank you for your attention!
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