Learning Dynamic Generative Models via Causal Optimal Transport

Beatrice Acciaio London School of Economics

with Michael Munn (Google NY), and Tianlin Xu (LSE)

Model Uncertainty in Risk Management 31 January 2020, Natixis, Paris

(日)

Let me tell you where we are heading to...

- ▶ We observe an **i.i.d. sample**, where every element is a path/evolution of some process of interest (asset price process, LOB, volatility surface, audio data,...)
- ▶ We want to understand the **distribution** underlying the sample
- ▶ We want to train a generator to:
 - **generate** new real-looking samples (e.g. to extend the available data set for training and evaluation of trading strategies)
 - predict the evolution of the path given that we observe part of it
- ▶ For this we use some dynamic modification of GANs

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

= nar

- Introduction to Generative Adversarial Networks (GANs)
- Our toolkit: Causal Optimal Transport (COT)
- Dynamic GANs via COT
- Applications

イロト 不同 とうほう イヨン

- Introduction to Generative Adversarial Networks (GANs)
- Our toolkit: Causal Optimal Transport (COT)
- Dynamic GANs via COT
- Applications

イロト 不同 とうほう イヨン

Generative: train a Generator G to learn data distribution from an i.i.d. sample of observations (training data)

Adversarial: set a Discriminator D against G, to stimulate G to do a better job

イロト イヨト イヨト

э.

Generative: train a Generator G to learn data distribution from an i.i.d. sample of observations (training data)

Adversarial: set a Discriminator D against G, to stimulate G to do a better job

- In a loop, we train: G to generate real-looking samples, and
 D to recognize whether an element comes from real data or is fake (generated by G).
- G and D compete with each other, which drives both of them to improve, until the generated samples are indistinguishable from the genuine data (zero-sum game).

Dynamic GANs

Causal OT

GANs

• training data $\{x^i\}_{i=1}^N$ on \mathcal{X} , empirical distribution $\mu = \frac{1}{N} \sum_{i=1}^N \delta_{x^i}$

Applications

- latent space \mathcal{Z} , dim $(\mathcal{Z}) \ll$ dim (\mathcal{X}) , noise distribution $\zeta \in \mathcal{P}(\mathcal{Z})$
- $g_{\theta} : \mathcal{Z} \to \mathcal{X}$ generates samples, $\nu_{\theta} = g_{\theta \#} \zeta \in \mathcal{P}(\mathcal{X})$ (cf. μ)
- $f_{\varphi}: \mathcal{X} \to [0,1]$ outputs high value if D believes input likely to be real

= nar

イロン 人間 とくほ とくほう

Dynamic GANs

Causal OT

GANs

• training data $\{x^i\}_{i=1}^N$ on \mathcal{X} , empirical distribution $\mu = \frac{1}{N} \sum_{i=1}^N \delta_{x^i}$

Applications

- latent space \mathcal{Z} , dim $(\mathcal{Z}) \ll$ dim (\mathcal{X}) , noise distribution $\zeta \in \mathcal{P}(\mathcal{Z})$
- $g_{\theta}: \mathcal{Z} \to \mathcal{X}$ generates samples, $\nu_{\theta} = g_{\theta \#} \zeta \in \mathcal{P}(\mathcal{X})$ (cf. μ)
- $f_{arphi}: \mathcal{X}
 ightarrow [0,1]$ outputs high value if D believes input likely to be real

Problem formulation in original GANs (Goodfellows et al. 2014):

$$\inf_{\theta} \sup_{\varphi} \left\{ \mathbb{E}^{x \sim \mu} [\ln f_{\varphi}(x)] + \mathbb{E}^{z \sim \zeta} [\ln(1 - f_{\varphi}(g_{\theta}(z)))] \right\}$$

D: learn
$$f_{arphi}$$
 (via NN) s.t. f_{arphi} (real) $\sim 1, \; f_{arphi}$ (fake) ~ 0

G: learn decoding map g_{θ} (via NN) to maximally confuse D

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

= nan

Causal OT

GANs

Why not Maximum Likelihood Estimation?

Dynamic GANs

- Density fitting: $d\nu_{\theta}(x) = p_{\theta}(x)dx$
- MLE: $\sup_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ln p_{\theta}(x^{i}) \iff \inf_{\theta} H(\mu|\nu_{\theta})$, where H(.|.) relative entropy

Applications

- But ν_{θ} has no density in \mathcal{X} , supports of ν_{θ} and μ may even be non-overlapping (MLE not well defined)
- \Rightarrow look for a more flexible discrepancy to compare μ and ν_{θ} . Use a metric that can handle measures with non-overlapping supports.

・ロット (日) (日) (日) (日)

= nac

Dynamic GANs Generative Adversarial Networks: moving on

Applications

Problems (with original GANs):

Causal OT

- Continuity w.r.t. parameters
- Convergence
- Stability

GANs

イロト イヨト イヨト

з.

Dynamic GANs Generative Adversarial Networks: moving on

Applications

Problems (with original GANs):

Causal OT

- Continuity w.r.t. parameters
- Convergence
- Stability

GANs

Some ways out:

- Gradient-based regularizations
- D calculates some other divergence between μ and ν : Integral Probability Metrics, Maximum Mean Discrepancy, Wasserstein distance, energy distance

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

э.

Dynamic GANs Generative Adversarial Networks: moving on

Problems (with original GANs):

Causal OT

- Continuity w.r.t. parameters
- Convergence
- Stability

GANs

Some ways out:

- Gradient-based regularizations
- D calculates some other divergence between μ and ν : Integral Probability Metrics, Maximum Mean Discrepancy, Wasserstein distance, energy distance

Example: Wasserstein distance $\mathcal{W}_1(\mu, \nu_{\theta}) = \inf\{\mathbb{E}^{\pi}[||x - y||] : \pi_1 = \mu, \pi_2 = \nu_{\theta}\}$

Applications

$$\implies \underbrace{\inf_{\theta}}_{G} \underbrace{\mathcal{W}_1(\mu, \nu_{\theta})}_{D}$$
Beatrice Acciaio (LSE) Causal Generative Adversarial Networks

Dual formulation of the Wasserstein distance:

$$\mathcal{W}_1(\mu,
u_ heta) = \sup_{f \; \mathsf{Lip}_1} \{ \mathbb{E}^\mu[f] - \mathbb{E}^{
u_ heta}[f] \}$$

イロト 不同 とうほう イヨン

∃ nar

Dual formulation of the Wasserstein distance:

$$\mathcal{W}_1(\mu,
u_ heta) = \sup_{f \; \operatorname{Lip}_1} \{ \mathbb{E}^\mu[f] - \mathbb{E}^{
u_ heta}[f] \}$$

 \rightarrow enforce Lip constraint via gradient penalization (easier and regularized)

$$\inf_{\theta} \sup_{\varphi} \left\{ \mathbb{E}^{\mu}[f_{\varphi}(x)] - \mathbb{E}^{\nu_{\theta}}[f_{\varphi}(y)] + \text{Lip. penalization} \right\}$$

イロト イヨト イヨト

= 900

Dual formulation of the Wasserstein distance:

$$\mathcal{W}_1(\mu,
u_{ heta}) = \sup_{f \; \operatorname{Lip}_1} \{ \mathbb{E}^{\mu}[f] - \mathbb{E}^{
u_{ heta}}[f] \}$$

 \rightarrow enforce Lip constraint via gradient penalization (easier and regularized)

$$\inf_{\theta} \sup_{\varphi} \left\{ \mathbb{E}^{\mu}[f_{\varphi}(x)] - \mathbb{E}^{\nu_{\theta}}[f_{\varphi}(y)] + \text{Lip. penalization} \right\}$$

- Continuity: if $\theta \mapsto g_{\theta}$ cont. $\Rightarrow \theta \mapsto \mathcal{W}_1(\mu, \nu_{\theta})$ cont.
- Convergence: WGANs converge if D always trained till optimality
- WGANs outperform MLE and MLE-NN unless exact parametric form of data is known

Applications

Dynamic GANs

GANs

Causal OT

 \rightarrow Genevay et al. suggest to consider the primal formulation: numerically more stable (in the dual, gradient requires differentiating the potential:difficult to compute, unstable)

イロト イヨト イヨト

Applications

→ Genevay et al. suggest to consider the primal formulation: numerically more stable (in the dual, gradient requires differentiating the potential:difficult to compute, unstable)

GANs: continuity w.r.t. $g \times$, convergence \times , stability \times

Dynamic GANs

WGANs (Optimal Transport):

Causal OT

GANs

 → <u>dual OT</u> (Arjovsky et al. 2017, Gulrajani et al. 2017) continuity ✓, convergence ✓, stability ×
 → <u>primal OT</u> (Genevay, Peyré, Cuturi 2017)

continuity \checkmark , convergence \checkmark , stability \checkmark

イロン 不通 とくほと くほど

= nar

Applications

→ Genevay et al. suggest to consider the primal formulation: numerically more stable (in the dual, gradient requires differentiating the potential:difficult to compute, unstable)

GANs: continuity w.r.t. $g \times$, convergence \times , stability \times

Dynamic GANs

WGANs (Optimal Transport):

Causal OT

GANs

 → <u>dual OT</u> (Arjovsky et al. 2017, Gulrajani et al. 2017) continuity ✓, convergence ✓, stability ×
 → <u>primal OT</u> (Genevay, Peyré, Cuturi 2017) continuity ✓, convergence ✓, stability ✓

 \rightarrow We consider a **dynamic framework**: to **generate paths** (data = time series)

- we mimic primal OT approach by Genevay et al.
- we need a good distance for sequential data

・ロット (雪) (日) (日)

- Introduction to Generative Adversarial Networks (GANs)
- Our toolkit: Causal Optimal Transport (COT)
- Dynamic GANs via COT
- Applications

イロト 不同 とうほう イヨン

GANs

Causal OT

Given Polish probability spaces $(\mathcal{X}, \mu), (\mathcal{Y}, \nu)$, move the mass from μ to ν minimizing the cost of transportation $c : \mathcal{X} \times \mathcal{Y} \to [0, \infty]$:

$$\operatorname{OT}(\mu,
u,oldsymbol{c}):=\inf\left\{\mathbb{E}^{\pi}[oldsymbol{c}(x,y)]:\pi\in\Pi(\mu,
u)
ight\},$$

where $\Pi(\mu, \nu)$ probability measures on $\mathcal{X} \times \mathcal{Y}$ with marginals μ and ν

Applications

GANs

Causal OT

Given Polish probability spaces $(\mathcal{X}, \mu), (\mathcal{Y}, \nu)$, move the mass from μ to ν minimizing the cost of transportation $c : \mathcal{X} \times \mathcal{Y} \to [0, \infty]$:

$$\operatorname{OT}(\mu,
u,oldsymbol{c}):=\inf\left\{\mathbb{E}^{\pi}[oldsymbol{c}(x,y)]:\pi\in\Pi(\mu,
u)
ight\},$$

where $\Pi(\mu, \nu)$ probability measures on $\mathcal{X} \times \mathcal{Y}$ with marginals μ and ν e.g. $\mathcal{X} = \mathcal{Y} = \mathbb{R}^d$, $c(x, y) = ||x - y|| \rightarrow \text{Wasserstein distance}$

Applications

A D > A B > A B > A B >

GΔNs

Causal OT

Given Polish probability spaces $(\mathcal{X}, \mu), (\mathcal{Y}, \nu)$, move the mass from μ to ν minimizing the cost of transportation $c : \mathcal{X} \times \mathcal{Y} \to [0, \infty]$:

$$\operatorname{OT}(\mu,
u,oldsymbol{c}):=\inf\left\{\mathbb{E}^{\pi}[oldsymbol{c}(x,y)]:\pi\in \mathsf{\Pi}(\mu,
u)
ight\},$$

where $\Pi(\mu, \nu)$ probability measures on $\mathcal{X} \times \mathcal{Y}$ with marginals μ and ν e.g. $\mathcal{X} = \mathcal{Y} = \mathbb{R}^d$, $c(x, y) = ||x - y|| \rightarrow \text{Wasserstein distance}$

Applications

→ **Dynamic framework** (e.g. $\mathcal{X} = \mathcal{Y} = \mathbb{R}^{d \times T}$) something that evolves in time: "move distribution of a process X into distribution of a process Y"

イロト イヨト イヨト

 \rightarrow What is a good distance in a dynamic framework?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- \rightarrow What is a good distance in a dynamic framework?
- \rightarrow <u>Idea</u>: move the mass in a non-anticipative way (Y is X-adapted, modulo external randomization)

A D > A B > A B > A B >

= 900

GANs Causal OT Dynamic GANs Applications Causal Optimal Transport

- \rightarrow What is a good distance in a dynamic framework?
- \rightarrow <u>Idea</u>: move the mass in a non-anticipative way (Y is X-adapted, modulo external randomization)
- \rightarrow Mathematically: $\pi \in \mathcal{P}(\mathbb{R}^{d \times T} \times \mathbb{R}^{d \times T})$ is causal if

$$\pi(dy_t|dx_1,\cdots,dx_T)=\pi(dy_t|dx_1,\cdots,dx_t)\quad\forall t$$

イロト 不同 とうほう イヨン

= nar

GANs Causal OT Dynamic GANs Applications Causal Optimal Transport

- \rightarrow What is a good distance in a dynamic framework?
- \rightarrow <u>Idea</u>: move the mass in a non-anticipative way (Y is X-adapted, modulo external randomization)
- \rightarrow Mathematically: $\pi \in \mathcal{P}(\mathbb{R}^{d \times T} \times \mathbb{R}^{d \times T})$ is causal if

$$\pi(dy_t|dx_1,\cdots,dx_T)=\pi(dy_t|dx_1,\cdots,dx_t)\quad\forall t$$

Causal Optimal Transport problem:

$$\operatorname{COT}(\mu, \nu, c) := \inf \left\{ \mathbb{E}^{\pi}[c(X, Y)] : \pi \in \Pi^{\mathsf{causal}}(\mu, \nu) \right\},$$

where $\Pi^{\text{causal}}(\mu, \nu) = \{\pi \in \Pi(\mu, \nu) : \pi \text{ causal}\}$

イロト 不同 とうほう イヨン

= nan

- Introduction to Generative Adversarial Networks (GANs)
- Our toolkit: Causal Optimal Transport (COT)
- Dynamic GANs via COT
- Applications

イロト 不同 とうほう イヨン

Dynamic Generative Adversarial Networks via COT

Our approach:

- We want to train a generator to produce sequential data
- We build some modification of GAN where D computes distance between the real distribution μ and the generated distribution ν_{θ} via causal optimal transport

Dynamic Generative Adversarial Networks via COT

Our approach:

- We want to train a generator to produce sequential data
- We build some modification of GAN where D computes distance between the real distribution μ and the generated distribution ν_{θ} via causal optimal transport
- Inspired by Genevay, Peyré and Cuturi, we consider the primal COT problem and add an entropic regularization \rightarrow Sinkhorn algorithm
- Causality provides a family of cost functions → D computes the worst case OT distance w.r.t. these cost functions (D is learning the cost function)

A D > A B > A B > A B >

1. We regularize the causal transport:

Causal OT

GANs

$$\begin{split} & \operatorname{COT}^{\varepsilon}(\mu,\nu,c) := \inf_{\pi \in \Pi^{\mathsf{causal}}(\mu,\nu)} \left\{ \mathbb{E}^{\pi}[c(x,y)] + \varepsilon \mathcal{H}(\pi|\mu \otimes \nu) \right\}, \\ & \operatorname{COT}^{\varepsilon}(\mu,\nu,c) \xrightarrow[\varepsilon \to 0]{} \operatorname{COT}(\mu,\nu,c) \quad (\mathsf{A., Backhoff, Jia 2020}) \end{split}$$

Applications

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

= nar

1. We regularize the causal transport:

Causal OT

GANs

$$\begin{split} & \operatorname{COT}^{\varepsilon}(\mu,\nu,c) := \inf_{\pi \in \Pi^{\mathsf{causal}}(\mu,\nu)} \left\{ \mathbb{E}^{\pi}[c(x,y)] + \varepsilon \mathcal{H}(\pi|\mu \otimes \nu) \right\}, \\ & \operatorname{COT}^{\varepsilon}(\mu,\nu,c) \xrightarrow[\varepsilon \to 0]{} \operatorname{COT}(\mu,\nu,c) \quad (\mathsf{A., Backhoff, Jia 2020}) \end{split}$$

Applications

2. We dualize the causality constraint, and obtain:

$$\operatorname{COT}^{\varepsilon}(\mu,\nu,c) = \sup_{s \in \mathbb{S}} \operatorname{OT}^{\varepsilon}(\mu,\nu,c+s)$$

A D > A B > A B > A B >

э.

1. We regularize the causal transport:

Causal OT

GANs

•

$$\operatorname{COT}^{\varepsilon}(\mu,\nu,c) := \inf_{\pi \in \Pi^{\operatorname{causal}}(\mu,\nu)} \left\{ \mathbb{E}^{\pi}[c(x,y)] + \varepsilon H(\pi|\mu \otimes \nu) \right\},$$

$$\operatorname{COT}^{\varepsilon}(\mu,\nu,c) \xrightarrow[\varepsilon \to 0]{} \operatorname{COT}(\mu,\nu,c)$$
 (A., Backhoff, Jia 2020)

Applications

2. We dualize the causality constraint, and obtain:

$$\operatorname{COT}^{\varepsilon}(\mu,\nu,c) = \sup_{s\in\mathbb{S}} \operatorname{OT}^{\varepsilon}(\mu,\nu,c+s)$$

3. We remove the bias \rightarrow Sinkhorn divergence:

$$\mathcal{W}_{\boldsymbol{c}+\boldsymbol{s},\varepsilon}(\mu,\nu) := \mathrm{OT}^{\varepsilon}(\mu,\nu,\boldsymbol{c}+\boldsymbol{s}) - \frac{1}{2}\mathrm{OT}^{\varepsilon}(\mu,\mu,\boldsymbol{c}+\boldsymbol{s}) - \frac{1}{2}\mathrm{OT}^{\varepsilon}(\nu,\nu,\boldsymbol{c}+\boldsymbol{s})$$

Causal Wasserstein GAN:

Causal OT

GANs

$$\inf_{ heta} \sup_{arphi} \mathcal{W}_{\boldsymbol{c}_{arphi},arepsilon}(\mu,
u_{ heta})$$

- \rightarrow D learns c_{φ} , that is, the cost function (worst-case distance)
- \rightarrow G learns ν_{θ} , that is, the best generating function g_{θ} ($\nu_{\theta} = g_{\theta \#} \zeta$)

Applications

- the cost functions c_{arphi} are of the form appearing in the dualization of causality
- φ ad θ learned through "dynamic architectures", such as Recurrent Neural Networks and Convolutionals Neural Networks

< ロ > < 同 > < 三 > < 三 >

Training architecture: example

Dynamic GANs

Causal OT

GANs

Basic Recurrent Neural Network

Applications

 $h_t = \sigma(Az_t + Bh_{t-1} + a)$ network memory, σ activation functions $y_t = Cs_t$, $\theta = \{A, B, C, a\}$ parameters: weight matrices and bias vectors Causal OT

To solve the min-max problem, we approximate $\mathcal{W}_{c_{\varphi},\epsilon}(\mu,\nu_{\theta})$:

Applications

- ullet sample mini-batches from real data and from latent space \hookrightarrow emp.distr. $\hat{\mu}, \hat{
 u}_{ heta}$
- penalize cost functions $c_arphi=c+s$ for which $s\notin\mathbb{S}$

Dynamic GANs

• compute $\inf_{\pi \in \Pi(\hat{\mu}, \hat{\nu}_{\theta})} \left\{ \mathbb{E}^{\pi}[c_{\varphi}] + \epsilon H(\pi | \hat{\mu} \otimes \hat{\nu}_{\theta}) \right\}$ by Sinkhorn algorithm (Cuturi 2013), by considering a pre-determined # iterations

$$\Rightarrow \widehat{\mathcal{W}}_{\boldsymbol{c}_{\varphi},\epsilon}(\hat{\mu},\hat{\nu}_{\theta})$$

Use stochastic Gradient Ascent/Descent to update parameters:

$$\varphi_{n+1} = \varphi_n + \alpha \nabla_{\varphi} \widehat{\mathcal{W}}_{c_{\varphi},\epsilon}(\hat{\mu}, \hat{\nu}_{\theta})$$
$$\theta_{n+1} = \theta_n - \alpha \nabla_{\theta} \widehat{\mathcal{W}}_{c_{\varphi},\epsilon}(\hat{\mu}, \hat{\nu}_{\theta})$$

A D > A B > A B > A B >

Pseudo-code

Data: $\theta_0, \varphi_0, \{x^i\}_{i=1}^N, \zeta, \epsilon$, batch size *m*, Sinkhorn iter., learning rate α , critic iter. n_c **Result:** θ . φ $\theta \leftarrow \theta_0, \varphi \leftarrow \varphi_0$ for k = 1, 2, ... do for $l = 1, 2, ..., n_c$ do Sample: $\{x^i\}_{i=1}^m$ from real data, and $\{z^i\}_{i=1}^m$ from ζ $\begin{array}{|} y^{i} \leftarrow g_{\theta}(z^{i}) \\ \varphi \leftarrow \varphi + \alpha \nabla_{\varphi} \Big(\widehat{\mathcal{W}}_{\boldsymbol{c}_{\varphi},\epsilon}(\hat{\mu}, \hat{\nu}_{\theta}) \Big) \end{array}$ end Sample: $\{x^i\}_{i=1}^m$ from real data, and $\{z^i\}_{i=1}^m$ from ζ $y^i \leftarrow g_{\theta}(z^i)$ $\theta \leftarrow \theta - \alpha \nabla_{\theta} \Big(\widehat{\mathcal{W}}_{c_{\varphi}, \epsilon}(\hat{\mu}, \hat{\nu}_{\theta}) \Big)$ end

イロト イヨト イヨト イヨト

-

- \rightarrow Causal Wasserstein GANs: learn how to generate real-looking evolutions given an observed dataset.
- → WIP: develop a conditional modification of the algorithm, for time-series trend prediction, so that we feed the beginning of a sequence and the generator produces some reasonable continuation.
 - Mathematically: easy modification
 - But may require different choice of architectures

イロト イヨト イヨト イヨト

- Introduction to Generative Adversarial Networks (GANs)
- Our toolkit: Causal Optimal Transport (COT)
- Dynamic GANs via COT
- Applications

イロト 不同 とうほう イヨン

Initial testing:

- We have been testing some easy-to check features on <u>simulated data</u>, e.g. reproducing periodic curves.
- Now we are testing on <u>standard datasets</u>, such as audio datasets (NSynth); and MNIST (yes, I know, not truly sequential..)

э.

Initial testing:

- We have been testing some easy-to check features on <u>simulated data</u>, e.g. reproducing periodic curves.
- Now we are testing on <u>standard datasets</u>, such as audio datasets (NSynth); and MNIST (yes, I know, not truly sequential..)

Financial applications: data-driven model-independent analysis

- Robust pricing of financial derivatives
- Volatility prediction
- Prediction of evolution of LOB

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

ъ.

As we are still working on the audio / financial applications - and since I cannot finish such a talk without showing something we generated...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

As we are still working on the audio / financial applications - and since I cannot finish such a talk without showing something we generated...

MNIST: batch size 32, critic 1, $\epsilon = 0.8$, Sinkhorn iter. 30, learning rate 0.0001

▲ 同 ▶ ▲ 国 ▶ ▲ 国

- Acciaio, Backhoff, Jia: Cournot-Nash equilibrium and optimal transport in a dynamic setting, 2020
- 📔 Arjovsky, Chintala, Bottou: Wasserstein GAN, 2017
- Cuturi: Sinkhorn distances: Lightspeed computation of OT, 2013
- Genevay, Peyré, Cuturi: Learning Generative Models with Sinkhorn Divergences, 2017
- Goodfellows et al.: Generative Adversarial Networks, 2014
- Gulrajani et al.: Improved Training of Wasserstein GANs, 2017

= nac

Thank you for your attention!

Beatrice Acciaio (LSE) Causal Generative Adversarial Networks

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● りへぐ