Risk bounds under dependence uncertainty

Ludger Rüschendorf University of Freiburg

Paris, 2020

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

References

© Rüschendorf, Uni Freiburg; 1

Outline

- 1. VaR bounds with marginal information
- 2. Reduced bounds, higher dimensional marginals
- 3. Variance and higher order moment constraints
- 4. Improved standard bounds
 - 4.1 One-sided dependence information
 - 4.2 (Partial) independence structures
 - 4.3 Two-sided improved bounds
- 5. Partially specified risk factor models
- 6. Subgroup structure models
- 7. Conclusion

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

R ef er en c e s

1. VaR bounds with marginal information

Stochastic Dependence a) dependence modelling

 $egin{aligned} X = (X_1, \dots, X_d), & X_i \in \mathbb{R}^d \ X_i \sim P_i & ext{marginal structure} \end{aligned}$

dependence structure: **Copula**

→ copula models Sklar's theorem

10

 $f_{ag} \sim P_{ag}$

b) Hoeffding-Fréchet bounds

stochastic ordering, extremal dependence bounds for risk functionals

Conferences: *Probability with given marginals* Rome 1990, Seattle 1993, Prague 1996, Barcelona 1998, Montreal 2004, Tartu 2007, Sao Paulo 2010

Outline

VaR bounds with marg inform

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

 $X = (X_1, \ldots, X_n)$ risk vector

marginal information: $X_i \sim F_i$

 $\longrightarrow~$ high model risk for VaR, TVaR, \ldots

maximal upper risk

$$M(s) = \sup_{X_i \sim F_i} \left\{ P\left(\sum_{i=1}^n X_i \ge s\right) \right\}$$

$$\stackrel{\text{Improved standard bounds}}{\underset{\substack{\text{varially specified rights}}{\underset{\substack{\text{rights}}{\text{rights}}}}} \\ \underbrace{\text{VaR}_{\alpha}(S_n) \quad \text{VaR}_{\alpha}(S_n^{\perp}) \quad \text{VaR}_{\alpha}(S_n^{c}) \quad \overline{\text{VaR}}_{\alpha}(S_n) \\ \underset{\text{lower bound independent comonotonic upper bound}}{\underset{\substack{\text{rights}}{\text{rights}}}} \\ \begin{array}{l} \underset{\substack{\text{Improved standard bounds}}{\underset{\substack{\text{rights}}{\text{rights}}}} \\ \underset{\substack{\text{rights}}{\text{rights}}}{\underset{\substack{\text{rights}}{\text{rights}}} \\ \underset{\substack{\text{rights}}{\text{rights}}}{\underset{\substack{\text{rights}}{\text{rights}}}} \\ \end{array}$$

VaR bounds with marg.

inform.

Theorem (unconstrained bounds)

$$\begin{split} A &:= \sum_{i=1}^{n} \mathsf{LTVaR}_{\alpha}(X_{i}) = \mathsf{LTVaR}_{\alpha}(S_{n}^{c}) \\ &\leq \mathsf{VaR}_{\alpha}(S_{n}) \leq \mathsf{TVaR}_{\alpha}(S_{n}) \\ &\leq \mathsf{TVaR}_{\alpha}(S_{n}^{c}) = \sum_{i=1}^{n} \mathsf{TVaR}_{\alpha}(X_{i}) =: B \end{split}$$

$$\operatorname{LTVaR}_{lpha}(X_i) := rac{1}{lpha} \int_0^{lpha} \operatorname{VaR}_u(X_i) du, \quad S_n^c = ext{ comonotonic sum}$$

Bernard, Rü, Vanduffel (2013), Puccetti, Rü (2012), Wang, Wang (2011)

Embrechts, Puccetti (2006), Embrechts, Puccetti, Rü (2013), Puccetti, Rü (2013)

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

R ef er en c es

$$\overline{\mathsf{VaR}}_{lpha}(S_n) \sim \mathsf{TVaR}_{lpha}(S_n^c), \quad n o \infty$$

and $\underline{\operatorname{VaR}}_{\alpha}(S_n) \sim \operatorname{LTVaR}_{\alpha}(S_n^c), n \to \infty$

Puccetti, Rü (2012), Puccetti, Wang (2013); Wang, Wang (2014); Embrechts, Wang, Wang (2015)

note: mixing (= negative dependence) in upper domain allows to increase VaR upper bound

Outline

VaR bounds with marg inform

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Rearrangement = **Dependence**

Theorem (Rü (1983))

Let $\mathfrak{F}(F_1,\ldots,F_d)$ be the set of all joint dfs on \mathbb{R}^d with marginals F_1, \ldots, F_d . Let U be a random variable with $F_U = U(0, 1)$. Then: $\mathfrak{F}(F_1,\ldots,F_d) = \{F_{(f_1(U),\ldots,f_d(U))}; f_i \sim_r F_i^{-1}, 1 \le i \le d\}.$ $M(s) = \sup \left\{ P\left(\sum_{i=1}^{n} L_i \ge s\right); \ L_i \sim F_i \right\}$ $= 1 - \inf \left\{ \alpha \; ; \; \exists \; f_j^{\alpha} \sim_r F_j^{-1} \big|_{[\alpha,1]}, \; \sum_{i=1}^n f_j^{\alpha} \ge s \right\}$

 \rightarrow RA-algorithm, precise determination of VaR bounds

Outline

VaR bounds with marg inform

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models Conclusion

Rearrangement algorithm

Puccetti, Rü (2012), Embrechts, Puccetti, Rü (2013)

9,00000 9.00000 9.00000 27.0000 2 9.17095 9.17095 9.17095 27.5129 3 9.35098 9.35098 9.35098 28.0530 4 9.54093 9.54093 9.54093 28 6228 5 9.74172 9.74172 9.74172 29.2252 6 9.95445 9.95445 9.95445 29.8634 7 10.18034 10.18034 10.18034 30.5410 8 10,42080 10,42080 10,42080 31,2624 9 10.67748 10.67748 10.67748 32.0325 10 10.95229 10.95229 32.8569 10.95229 11 11.24745 11.24745 11,24745 33.7423 12 11.56562 11.56562 11.56562 34,6969 13 11,90994 11,90994 11.90994 35.7298 12,28422 14 12,28422 12,28422 36.8527 12,69306 38.0792 15 12,69306 12,69306 16 13.14214 13.14214 39,4264 13,14214 17 13.63850 13.63850 13.63850 40.9155 14.19109 14.19109 42.5733 18 14.19109 19 14.81139 14.81139 14.81139 44.4342 20 15.51446 15.51446 15,51446 46.5434 16.32051 16.32051 21 16.32051 48.9615 22 17.25742 17.25742 17.25742 51,7723 23 18.36492 18.36492 18.36492 55.0948 24 19.70197 19,70197 19,70197 59.1059 25 21.36068 21.36068 21.36068 64.0820 26 23,49490 23,49490 23,49490 70,4847 27 26.38613 26.38613 26.38613 79.1584 28 30.62278 30.62278 91.8683 30 62278 29 37.72983 37.72983 37,72983 113,1895 53,77226 53,77226 53,77226 161,3168 30 Σ 494,99920 494,99920 494,99920 NA

Pareto(2) marginals and $\alpha = 0.99$

- Any marginal distribution can be approximated by a discrete model with N equally weighted points.
- In order to find \overline{VaR}_{α} (\underline{VaR}_{α}) it is sufficient to consider only the upper (lower) $(1 - \alpha)$ part of the support of each marginal distribution.
- For *N* large enough, it is possible to approximate any dependence between the discrete marginals by a proper rearrangement of the columns of *X*.
- The rearrangement algorithm (RA) finds efficiently the rearrangement yielding an approximation of VaR_α.

Outline

VaR bounds with marg. inform

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

- RA calculates numerically \overline{VaR}_{α} and \underline{VaR}_{α} .
- RA can be used with any set of inhomogeneous marginals, with dimensions d up in the several hundreds and for any quantile level α.
- RA provides very accurate estimates ($N = 10^5$).
- RA can be used also with further aggregating functions such as \times , min, max, $(\sum x_i K)_+$, $\psi(x_1, \ldots, x_n)$ supermodular.

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Optimal coupling yields (in example) a dependence in which:

- either all (three) rvs are close to each other and sum up to something very close to the minimal sum (→ complete mixability).
- or one of the components is large and the other (two) are small.
- theoretical result: structure of optimal coupling

Outline

VaR bounds with marg inform

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

References

© Rüschendorf, Uni Freiburg; 10

Pareto(2) marginals and $\alpha = 0.99$

	1	2	3	Σ
1	9.00000	9.00000	9.00000	27.0000
2	9.17095	9.17095	9.17095	27.5129
3	9.35098	9.35098	9.35098	28.0530
4	9.54093	9.54093	9.54093	28.6228
5	9.74172	9.74172	9.74172	29.2252
6	9.95445	9.95445	9.95445	29.8634
7	10.18034	10.18034	10.18034	30.5410
8	10.42080	10.42080	10.42080	31.2624
9	10.67748	10.67748	10.67748	32.0325
10	10.95229	10.95229	10.95229	32.8569
11	11.24745	11.24745	11.24745	33.7423
12	11.56562	11.56562	11.56562	34.6969
13	11.90994	11.90994	11.90994	35.7298
14	12.28422	12.28422	12.28422	36.8527
15	12.69306	12.69306	12.69306	38.0792
16	13.14214	13.14214	13.14214	39.4264
17	13.63850	13.63850	13.63850	40.9155
18	14.19109	14.19109	14.19109	42.5733
19	14.81139	14.81139	14.81139	44.4342
20	15.51446	15.51446	15.51446	46.5434
21	16.32051	16.32051	16.32051	48.9615
22	17.25742	17.25742	17.25742	51.7723
23	18.36492	18.36492	18.36492	55.0948
24	19.70197	19.70197	19.70197	59.1059
25	21.36068	21.36068	21.36068	64.0820
26	23.49490	23.49490	23.49490	70.4847
27	26.38613	26.38613	26.38613	79.1584
28	30.62278	30.62278	30.62278	91.8683
29	37.72983	37.72983	37.72983	113.1895
30	53.77226	53.77226	53.77226	161.3168
Σ	494.99920	494.99920	494.99920	NA

Z

 $\overline{\mathsf{VaR}}_{\alpha} = 45.9994$

Optimal Coupling!

	1	2	3	Σ
1	12.28422	21.36068	11.24745	44.8924
2	9.95445	30.62278	9.74172	50.3190
3	21.36068	11.90994	11.56562	44.8362
4	15.51446	14.19109	14.81139	44.5169
5	19.70197	12.28422	13.14214	45.1283
6	17.25742	13.63850	13.63850	44.5344
7	53.77226	9.00000	9.17095	71.9432
8	10.42080	26.38613	10.18034	46.9873
9	13.14214	13.14214	18.36492	44.6492
10	9.17095	53.77226	9.00000	71.9432
11	13.63850	11.24745	19.70197	44.5879
12	18.36492	14.81139	11.90994	45.0862
13	12.69306	19.70197	12.69306	45.0881
14	9.74172	9.95445	30.62278	50.3190
15	10.95229	10.67748	23.49490	45.1247
16	30.62278	9.74172	9.95445	50.3190
17	10.67748	23.49490	10.95229	45.1247
18	14.81139	15.51446	14.19109	44.5169
19	11.56562	17.25742	16.32051	45.1435
20	16.32051	12.69306	15.51446	44.5280
21	37.72983	9.54093	9.35098	56.6217
22	23.49490	10.95229	10.67748	45.1247
23	9.00000	9.17095	53.77226	71.9432
24	10.18034	10.42080	26.38613	46.9873
25	14.19109	18.36492	12.28422	44.8402
26	26.38613	10.18034	10.42080	46.9873
27	9.54093	9.35098	37.72983	56.6217
28	11.24745	16.32051	17.25742	44.8254
29	11.90994	11.56562	21.36068	44.8362
30	9.35098	37.72983	9.54093	56.6217
Σ	494.99920	494.99920	494.99920	NA

Outline

VaR bounds with marg inform

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

 $N = 10^5 \Rightarrow \overline{VaR}_{\alpha} = 45.99$

0	A) 1	2	3	Σ	0	B)	1	2	3	Σ	
1	9.00000	9.00000	9.00000	27.0000	1		13.43376	15.66667	15.66667	44.7671	
2	9.10153	9.10153	9.10153	27.3046	2		12.86750	14.81139	17.25742	44.9363	
3	9.20621	9.20621	9.20621	27.6186	3		15.66667	13.14214	16.14986	44.9587	
4	9.31421	9.31421	9.31421	27.9426	4		14.43033	16.14986	14.43033	45.0105	
5	9.42572	9.42572	9.42572	28.2772	5		15.22214	11.90994	17.89822	45.0303	
6	9.54093	9.54093	9.54093	28.6228	6		13.74420	17.89822	13.43376	45.0762	
7	9.66004	9.66004	9.66004	28.9801	7		19.41241	12.86750	12.86750	45.1474	
8	9.78328	9.78328	9.78328	29.3498	8		20.32007	11.70001	13.14214	45.1622	
9	9.91089	9.91089	9.91089	29.7327	9		18.61161	14.43033	12.13064	45.1726	Outline
10	10.04315	10.04315	10.04315	30.1295	10		13.14214	13.43376	18.61161	45.1875	outilite
11	10.18034	10.18034	10.18034	30.5410	11		16.14986	12.36306	16.67767	45.1906	
12	10.32277	10.32277	10.32277	30.9683	12		11.12678	13.74420	20.32007	45.1910	VaR bounds
13	10.47079	10.47079	10.47079	31.4124	13		11.70001	12.13064	21.36068	45.1913	5.6
14	10.62476	10.62476	10.62476	31.8743	14		11.50000	22.57023	11.12678	45.1970	with marg.
15	10.78511	10.78511	10.78511	32.3553	15	1	21.36068	11.50000	12.36306	45.2237	inform
16	10.95229	10.95229	10.95229	32.8569	16		14.81139	15.22214	15.22214	45.2557	
17	11.12678	11.12678	11.12678	33.3803	17		12.60828	21.36068	11.30915	45.2781	
18	11.30915	11.30915	11.30915	33.9274	18		14.07557	18.61161	12.60828	45.2955	Reduced
19	11.50000	11.50000	11.50000	34.5000	19		17.89822	12.60828	14.81139	45.3179	L J L L L L
20	11.70001	11.70001	11.70001	35.1000	20		11.30915	20.32007	13.74420	45.3734	bounds, nignei
21	11,90994	11.90994	11,90994	35,7298	21		11.90994	14.07557	19,41241	45.3979	dim margin
22	12.13064	12.13064	12.13064	36.3919	22		17.25742	16.67767	11.50000	45.4351	unit. mugni.
23	12.36306	12.36306	12.36306	37.0892	23		12.13064	19,41241	14.07557	45.6186	
24	12,60828	12.60828	12.60828	37.8248	24		16.67767	17.25742	11.70001	45.6351	Variance and
25	12.86750	12.86750	12.86750	38.6025	25		12.36306	10.78511	22.57023	45.7184	1.1.1.1.1.1.1
26	13,14214	13,14214	13,14214	39.4264	26		10.78511	10.95229	24.00000	45.7374	nigner order
27	13,43376	13,43376	13,43376	40.3013	27		22.57023	11.30915	11,90994	45.7893	moment con
28	13,74420	13,74420	13,74420	41.2326	28		10.95229	24,00000	10,95229	45.9046	moment con.
29	14,07557	14.07557	14,07557	42.2267	29		24.00000	11.12678	10.78511	45,9119	
30	14,43033	14,43033	14,43033	43,2910	30		25.72612	10.62476	10,47079	46.8217	mproved
31	14,81139	14.81139	14.81139	44,4342	31		10.62476	10,47079	25,72612	46.8217	and a second
32	15,22214	15,22214	15,22214	45,6664	32		10,47079	25,72612	10.62476	46.8217	standard
33	15,66667	15,66667	15,66667	47,0000	33		10.32277	27.86751	10.18034	48.3706	bounds
34	16.14986	16.14986	16.14986	48.4496	34		27.86751	10.18034	10.32277	48.3705	boundo
35	16,67767	16.67767	16.67767	50.0330	35		10.18034	10.32277	27.86751	48.3706	
36	17.25742	17.25742	17.25742	51,7723	36		9,91089	10.04315	30.62278	50.5768	Partially
37	17,89822	17.89822	17,89822	53,6947	37		10.04315	30.62278	9,91089	50.5768	te îr tru
38	18,61161	18.61161	18,61161	55.8348	38		30.62278	9,91089	10.04315	50.5768	specified risk
39	19,41241	19,41241	19,41241	58,2372	39		9,78328	34,35534	9,66004	53,7987	factor mod
48	20 32007	20 32007	20 32007	60 9602	49		34 35534	9 66884	9 78328	53 7987	naccor mour
41	21 36268	21 36868	21 36868	64 0820	41		9 66884	9 78328	34 35534	53 7987	
42	22.57023	22.57023	22.57023	67.7107	47		9.42572	9.54093	39.82483	58.7915	Subgroup
43	24.00000	24.00000	24.00000	72.0000	43		39.82483	9.42572	9.54093	58.7915	
44	25.72612	25.72612	25.72612	77.1784	44		9.54093	39.82483	9.42572	58.7915	structure
45	27.86751	27.86751	27.86751	83.6025	45	۰.	49.00000	9.31421	9,20621	67.5204	models
46	30.62278	30.62278	30.62278	91.8683	46		9.31421	9.20621	49.00000	67.5204	
47	34,35534	34.35534	34.35534	103.0660	47		9,20621	49,00000	9.31421	67.5204	
48	39 82483	39 82483	39 82483	119 4745	48		9 00000	9 10153	69 71068	87 8122	Conclusion
49	49 00000	49 00000	49 00000	147 0000	40		69 71068	9 00000	9 10153	87 8122	
50	69.71068	69.71068	69.71068	209.1320	50		9.10153	69.71068	9,00000	87.8122	
5	851.72901	851.72901	851.72901	20311320	50	8	51.72901	851.72901	851.72901	0. 10122	References
4	001112001	001.12001	001115901		2	0	ST.LEDOT		001116301		

(A): The matrix \underline{X}^{α} defined in (18) for $\alpha = 0.99$ and N = 50 (representing comonotonicity among the discrete marginals).

(B): The matrix \underline{X}^* derived as an output of the iterative rearrangement of the columns of \underline{X}^{α} . The rows of \underline{X}^* are ordered accordingly to their sums. In this example we consider a discretization of d = 3 Pareto(2)-distributed risks.

© Rüschendorf, Uni Freiburg; 12

Dependence Uncertainty

d = 8	N = 1.0e05	avg time: 30 secs		
α	$\underline{\text{VaR}}_{\sigma}(L)$ (RA range)	$\operatorname{VaR}^+_{\sigma}(L)$ (exact)	$\overline{\text{VaR}}_{a}(L)$ (exact)	$\overline{\text{VaR}}_o(L)$ (RA range)
0.99	9.00 - 9.00	72.00	141.67	141.66-141.67
0.995	13.13 - 13.14	105.14	203.66	203.65-203.66
0.999	30.47 - 30.62	244.98	465.29	465.28-465.30
d = 56	N = 1.0e05	avg time: 9 mins		
α	$\underline{\text{VaR}}_{\alpha}(L)$ (RA range)	$VaR^+_{\sigma}(L)$ (exact)	$\overline{\text{VaR}}_{\alpha}(L)$ (exact)	$\overline{\text{VaR}}_{\alpha}(L)$ (RA range)
0.99	45.82 - 45.82	504	1053.96	1053.80-1054.11
0.995	48.60 - 48.61	735.96	1513.71	1513.49-1513.93
0.999	52.56 - 52.58	1714.88	3453.99	3453.49-3454.48
d = 648	N = 5.0e04	avg time: 8 hrs		
a	$\underline{\text{VaR}}_{\sigma}(L)$ (RA range)	$VaR_{a}^{+}(L)$ (exact)	$\overline{\text{VaR}}_{\alpha}(L)$ (exact)	$\overline{\text{VaR}}_{\alpha}(L)$ (RA range)
0.99	530.12 - 530.24	5832.00	12302.00	12269.74-12354.00
0.995	562.33 - 562.50	8516.10	17666.06	17620.45-17739.60
0.999	608.08 - 608.47	19843.56	40303.48	40201.48-40467.92

Estimates for $\overline{VaR}_{\alpha}(L)$ and $\underline{VaR}_{\alpha}(L)$ for random vectors of Pareto(2)-distributed risks.

VaR range (5), and comonotonic VaR(8) (in log-scale on the right) for the sum of d = 8 GPD risks with parameters following Moscadelli (2004), based on RA for N = 1: 0e05.

Outline

VaR bounds with marg. inform

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

References

© Rüschendorf, Uni Freiburg; 13

How to reduce risk bounds by using partial dependence information?

- higher order marginals (reduced bounds)
- positive, negative dependence restrictions (improved standard bounds)
- information on variance of S_n , correlations of X_i , X_j
- partial information on risk factors (partially specified risk factor models)
- models with subgroup structure

intuition:

- positive dependence information allows to increase lower risk bounds (but not upper bounds)
- negative dependence information allows to decrease upper risk bounds (but not lower risk bounds)

Outline

VaR bounds with marg. inform

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

2. Higher dimensional marginals, reduced bounds

$$\mathcal{F}_{\mathcal{E}} = \mathcal{F}(F_J; J \in \mathcal{E}) \subset \mathcal{F}(F_1, \ldots, F_n)$$

 $F_J = F_{X_J}, \quad X_J = (X_j)_{j \in J} \quad \text{for } J \in \mathcal{E}, \ \bigcup_{J \in \mathcal{E}} J = \{1, \dots, n\}$

 $\mathcal{F}_{\mathcal{E}}$ generalized Fréchet class

 $\mathcal{E} = \{\{1\}, \dots, \{n\}\} \Rightarrow \mathcal{F}_{\mathcal{E}} = \mathcal{F}(F_1, \dots, F_n)$ simple marginal class

$$\mathcal{E} = \{\{j, j+1\}, 1 \le j \le n-1\} \rightarrow \mathcal{F}_{\mathcal{E}} = \mathcal{F}(F_{1,2}, F_{2,3}, \dots, F_{n-1,n})$$

series system

$$\mathcal{E} = \{\{1, j\}, 2 \leq j \leq n\} \rightarrow \mathcal{F}(F_{1,2}, F_{1,3}, \dots, F_{1,n})$$
starlike system

Outline

VaR bounds with marg. inform.

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

References

© Rüschendorf, Uni Freiburg; 15

$$\begin{cases} M_{\mathcal{E}}(s) = \sup\{P(X_1 + \dots + X_n \ge s); F_X \in \mathcal{F}_{\mathcal{E}}\} \\ m_{\mathcal{E}}(s) = \inf\{P(X_1 + \dots + X_n \ge s); F_X \in \mathcal{F}_{\mathcal{E}}\} \end{cases}$$
marginal problem: $\mathcal{F}_{\mathcal{E}} \neq \Phi$ (Rü (1991))
decomposable case
duality theorem $M_{\mathcal{E}} \neq \Phi$
 $M_{\mathcal{E}}(\varphi) := \sup\left\{\int \varphi dP; P \in M_{\mathcal{E}}\right\}$
 $= \inf\left\{\sum_{J \in \mathcal{E}} \int f_J dP_J; \sum_{J \in \mathcal{E}} f_J \circ \pi_J \ge \varphi\right\}, \varphi$ usc
Conclusion

Rü (1984), Kellerer (1987)

Bonferoni type bounds

Proposition

 $(E_i, A_i), (P_J, J \in \mathcal{E})$ marginal system 1. $M_{\mathcal{E}}(A_1 \times \cdots \times A_n) \leq \min_{J \in \mathcal{E}} P_J(A_J)$ 2. $\mathcal{E} = J_2^n = \{(i, j); i, j < n\},\$ $q_i = P_i(A_i^c), \quad q_{ij} = P_{ij}(A_i^c \times A_i^c)$ $T = spanning trees of G_n$, Rü (1991)

Conditional bounds

sharp bounds by conditioning in some decomposable cases!

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

reduced systems

$$\mathcal{E} = \{J_1, \dots, J_m\}$$
$$\eta_i := \#\{J_r \in \mathcal{E}; i \in J_r\}, \quad 1 \le i \le n$$

For X risk vector, $F_X \in \mathcal{F}_{\mathcal{E}}$ define:

$$Y_r := \sum_{i \in J_r} \frac{X_i}{\eta_i}, \quad H_r := F_{Y_r}, \quad r = 1, \dots, m$$

 $\mathcal{H}=\mathcal{F}(H_1,\ldots,H_m)$ Fréchet class

Proposition (reduced bounds)

 $\mathcal{F}_\mathcal{E}= \emptyset$ consistent marginal system, then for $s\in \mathbb{R}$ $M_\mathcal{E}(s)\leq M_\mathcal{H}(s)$ and $m_\mathcal{E}(s)\geq m_\mathcal{H}(s)$

Embrechts, Puccetti (2010), Puccetti, Rü (2012)

© Rüschendorf, Uni Freiburg; 18

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Remark

1. generalized weighting schemes

$$Y_r^{\alpha} = \sum_{i=1}^n \alpha_i^r X_i, \quad \begin{cases} \alpha_i^r > 0 & \text{iff } i \in J_r \quad \text{and} \\ \sum_{r=1}^n \alpha_i^r = 1 \end{cases}$$

ightarrow parametrized family of bounds

 Rearrangement algorithm can be used to calculate M_H, m_H.

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Series case $F_{i,i+1}$ 2-dim Pareto

α	$\operatorname{VaR}^+_{\alpha}(L)$	$\overline{\operatorname{VaR}}_{\alpha}^{r}(L),$ (A)	$\overline{\operatorname{VaR}}_{\alpha}^{r}(L), (B)$	$\overline{\operatorname{VaR}}_{\alpha}(L)$
0.99	5400.00	8496.13	10309.14	11390.00
0.995	7885.28	12015.04	14788.71	16356.42
0.999	18373.67	26832.2	33710.3	37315.70

Estimates for VaR_{α}(*L*) for a random vector of *d* = 600 Pareto(2)-distributed risks under different dependence scenarios: VaR_{α}^{*}(*L*) (*L*₁,...,*L*₆₀) has copula *C* = *M*); VaR_{α}^{*}(*L*), (A): the bivariate marginals *F*_{2j-1,2j} are independent; VaR_{α}^{*}(*L*), (B): the bivariate marginals *F*_{2j-1,2j} have Pareto copula with $\delta = 1.5$; VaR_{α}(*L*). ro dependence assumptions are made.

VaR bounds $\nabla a R_{\alpha}(L)$ (see (5)) and reduced bounds $\nabla a R'_{\alpha}(L)$ (see (24a)) for a random vector of d = 600Pareto(2)-distributed risks with fixed bivariate marginals $F_{2j-1,2j}$ generated by a Pareto copula with $\delta = 1.5$, comonotone (left) and by the independence copula (right).

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

3. Risk bounds with variance and higher order moment constraints

information: $X_i \sim F_i$, $1 \le i \le n$ and $Var(S_n) \le s^2$ (*)

 → partial information on dependence alternatively information on Cov(X_i, X_j), Bernard, Rü, Vanduffel (2016)

 $\begin{cases} M = \sup\{ \operatorname{VaR}_{\alpha}(S_n); & S_n \text{ satisfies } (*) \} \\ m = \inf\{ \operatorname{VaR}_{\alpha}(S_n); & S_n \text{ satisfies } (*) \} \end{cases}$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Theorem

 $lpha \in (0, 1), \quad Var(S_n) \le s^2, \text{ then}$ $a := \max\left(\mu - s\sqrt{rac{lpha}{1-lpha}}, A
ight) \le m \le VaR_{lpha}(S_n) \le M$ $\le b := \min\left(\mu + s\sqrt{rac{lpha}{1-lpha}}, B
ight), \quad \mu = ES_n$

Remark

VaR bounds and convex order worst case dependence structure has relation to convex order minima in upper and lower part

 $\{S_n \geq \mathsf{VaR}_{\alpha}(S_n)\}$ resp. $\{S_n < \mathsf{VaR}_{\alpha}(S_n)\}$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Proposition

$$X_{i} \sim F_{i}, \quad F_{i}^{\alpha} \sim F_{i}/[q_{i}(\alpha), \infty), \quad X_{i}^{\alpha}, Y_{i}^{\alpha} \sim F_{i}^{\alpha}$$

a)
$$M = \sup_{X_{i} \sim F_{i}} \operatorname{VaR}_{\alpha}\left(\sum_{i=1}^{n} X_{i}\right) = \sup_{Y_{i}^{\alpha} \sim F_{i}^{\alpha}} \operatorname{VaR}_{0}\left(\sum_{i=1}^{n} Y_{i}^{\alpha}\right)$$

b) If
$$S^{\alpha} = \sum_{i=1}^{n} Y_{i}^{\alpha} \leq_{\mathrm{cx}} \sum_{i=1}^{n} X_{i}^{\alpha}$$
, then

$$\operatorname{VaR}_{0}\left(\sum_{i=1}^{n} X_{i}^{\alpha}\right) \leq \operatorname{VaR}_{0}(S^{\alpha}) = \operatorname{ess\,inf}\left(\sum_{i=1}^{n} Y_{i}^{\alpha}\right) \leq B$$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

maximizing VaR \sim maximizing minimal support over all $Y_i \sim F_i^{\alpha}$ is implied by convex order

VaR bounds and convex order

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Extended Rearrangement Algorithm (ERA)

two alternating steps

- 1. choice of domain, starting from largest lpha-domain
- 2. Rearrangement in upper α -part and in lower $1-\alpha$ -part
- 3. check variance constraint fulfilled
- 4. shift of domain and iterate

Variation of ERA: Self determined split of domains.

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

References

© Rüschendorf, Uni Freiburg; 25

	(m_d, M_d)	$\varrho = 0$	n = 10 $\rho = 0.15$	$\varrho = 0.3$	$\varrho = 0$	n = 100 $\rho = 0.15$	$\varrho = 0.3$	
ſ	$d = 10,000 \begin{array}{c} VaR_{95\%} \\ VaR_{99\%} \\ VaR_{99.5\%} \end{array}$	(4.401; 15.72) (5.486; 28.69) (6.820; 39.48)	$\begin{array}{c}(4.091;21.85)\\(4.591;43.45)\\(5.471;59.60)\end{array}$	(3.863; 26.19) (4.492; 53.22) (4.850; 73.11)	(47.96; 84.72) (48.99; 129.5) (49.23; 162.8)	(42.48; 188.9) (46.61; 366.0) (47.54; 499.1)	$\begin{array}{c}(39.61;243.3)\\(45.36;489.5)\\(46.68;671.5)\end{array}$,

Panel A: Approximate sharp bounds obtained by the ERA

Panel B: Variance-constrained bounds

(a _d , b _d)	11	n = 10			n = 100		bοι
	$\varrho = 0$	$\rho = 0.15$	$\rho = 0.3$	$\varrho = 0$	$\rho = 0.15$	$\rho = 0.3$	dim
VaR 95%	(4.398; 16.03)	(4.089; 21.92)	(3.861; 26.23)	(47.96; 84.74)	(42.48; 188.9)	(39.61; 243.4)	
$d = 10,000 \text{ VaR}_{99\%}$	(4.725; 30.20)	(4.589; 43.64)	(4.490; 53.50)	(48.99; 129.6)	(46.59; 367.3)	(45.33; 491.7)	Vai
VaR 99.5%	(4.800; 40.74)	(4.705; 59.80)	(4.634; 73.77)	(49.23; 162.9)	(47.54; 500.0)	(46.65; 676.3)	hig
VaR o F%	(4.372; 16.94)	(4.037; 23.30)	(3.791; 27.96)	(48.01; 87.75)	(42.09; 200.3)	(38.99; 259.2)	mo
$d = +\infty$ VaR _{99%}	(4.725; 32.25)	(4.578; 46.77)	(4.470; 57.41)	(49.13; 136.2)	(46.53; 393.1)	(45.18; 527.4)	
VaR 99.5%	(4.806; 43.63)	(4.702; 64.22)	(4.634; 77.72)	(49.39; 172.2)	(47.56; 536.4)	(46.60; 726.9)	Im

Panel C: Unconstrained bounds independent of ϱ

(A _d , B _d)	n = 10	n = 1 00
$\label{eq:constraint} \left[\begin{array}{c} {\sf VaR_{95\%}}, \\ d = 10,000 & {\sf VaR_{99\%}} \\ {\sf VaR_{99,5\%}}. \end{array} \right]$	(3.646; 30.33) (4.447; 57.76) (4.633; 74.11)	(36.46; 303.3) (44.47; 577.6) (46.33; 741.1)
$d = +\infty \qquad \begin{array}{c} {\sf VaR_{95\%}} \\ {\sf VaR_{99\%}} \\ {\sf VaR_{99,5\%}} \end{array}$	(3.647; 30.72) (4.448; 59.62) (4.635; 77.72)	(36.47; 307.2) (44.48; 596.2) (46.35; 777.2)

Bounds on Value-at-Risk of sums of Pareto distributed risks ($\theta = 3$)

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Application to Credit Risk portfolios

asset correlations ϱ^A – default correlations ϱ^D , loans $X_j \sim \mathcal{B}(p)$

example:
$$n = 10,000, p = 0.049$$
 default probability,
 $\varrho^D = 0.0157$ (McNeil et al. (2005)),
 $s^2 = np(1-p) + n(n-1)p(1-p)\varrho^D$

	(A_d, B_d)	(a_d, b_d)	(m_d, M_d)	KMV	Beta	CreditMetrics	
VaR _{0.8}	(0%; 24.50%)	(3.54%; 10.33%)	(3.63%; 10%)	6.84%	6.95%	6.71%	
VaR _{0.9}	(0%; 49.00%)	(4.00%; 13.04%)	(4.00%; 13%)	8.51%	8.54%	8.41%	
Va R0.95	(0%; 98.00%)	(4.28%; 16.73%)	(4.32%; 16%)	10.10%	10.01%	10.11%	
$VaR_{0.995}$	(4.42%; 100.00%)	(4.71%; 43.18%)	(4.73%; 40%)	15.15%	14.34%	15.87%	5

The table provides VaR bounds and VaR computed in different models (KMV, Beta, CreditMetrics).

 $A_d, B_d
ightarrow$ bounds from marginal information $a_d, b_d
ightarrow$ bounds with variance constraints

Dutline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

		p = 0.25%					
	(A, B)	(a, b)	KMV	(A, B)	(a, b)	KMV	Outline
$\rho^{A} = 0\%$	(0%; 50%)	(0.25%; 0.25%)	0.25%	(0.50%; 100%)	(1.00%; 1.00%)	1.0%	VaR bo
$\varrho^{A} = 6\%$	(0%; 50%)	(0.23%; 3.27%)	1.2%	(0.50%; 100%)	(0.95%; 10.98%)	4.0%	with ma
$\varrho^A = 12\%$	(0%; 50%)	(0.23%; 5.05%)	2.1%	(0.50%; 100%)	(0.92%; 16.27%)	6.3%	inform.
$\varrho^{A} = 18\%$	(0%; 50%)	(0.23%; 6.84%)	2.9%	(0.50%; 100%)	(0.90%; 21.18%)	8.7%	Reduce
$\varrho^A = 24\%$	(0%; 50%)	(0.21%; 8.76%)	3.8%	(0.50%; 100%)	(0.87%; 26.09%)	11.1%	bounds,
$\varrho^A = 30\%$	(0%; 50%)	(0.20%; 10.85%)	4.8%	(0.50%; 100%)	(0.85%; 31.13%)	13.7%	dim. m

Unconstrained and constrained upper and lower 0.995-VaR bounds for several combinations of default probability and correlation and VaR in the (one-factor) KMV model

• significant model error, ex. $\rho^A = 6\%$, p = 0.25%, then 99.5 % VaR bounds 0.2 %-3.3 %

Variance and higher order moment con.

Higher order moment constraints

Bernard, Rü, Vanduffel, Yao (2017) $X_i \sim F_i, \ 1 \le i \le n \text{ and } ES_n^k \le c_k, \ k = 2, \dots, K$

→ strengthened upper bounds for $VaR_{\alpha}(S_n)$, modification of RA-algorithm and theoretical bounds

	VaR assessment of a corporate portfolio										
	q =	KMV	Comon.	Un constrain ed	K = 2	K = 3	K = 4				
	95%	281.3	393.3	(34.0;2083.3)	(111.8;483.1)	(111.8;433.0)	(111.8;412.8)				
$\varrho =$	99%	398.7	2374.1	(56.5;6973.1)	(115.0;943.9)	(117.4 ; 713.3)	(118.2;610.9)				
0.05	99.5%	448.5	5088.5	(89.4;10119.9)	(116.9;1285.9)	(118.9;889.5)	(119.8;723.2)				
	99.9%	573.1	12905.1	(111.8;14784.9)	(120.2 ; 2718.1)	(121.2;1499.6)	(121.8;1075.9)				
	95%	340.6	393.3	(34.0;2083.3)	(97.3;614.8)	(100.9;562.8)	(100.9;560.6)				
$\varrho =$	99%	539.4	2374.1	(56.5;6973.1)	(111.8;1245.0)	(115.0;941.2)	(115.9;834.7)				
0.10	99.5%	631.5	5088.5	(89.4;10119.9)	(114.9;1709.4)	(117.6;1177.8)	(118.5;989.5)				
	99.9%	862.4	12905.1	(111.8;14784.9)	(119.2;3692.3)	(120.8;1995.9)	(121.2;1472.7)				
	95%	388.4	393.3	(34.0;2083.3)	(91.5;735.9)	(93.4 ; 697.0)	(92.0;727.9)				
$\varrho =$	99%	675.8	2374.1	(56.5;6973.1)	(111.8;1519.5)	(112.4;1174.5)	(113.7;1083.9)				
0.15	99.5%	816.1	5088.5	(89.4;10119.9)	(112.8;2098.0)	(115.9;1472.7)	(116.9;1287.6)				
	99.9%	1178.4	12905.1	(111.8;14784.9)	(118.4;4531.3)	(120.7;2501.8)	(120.9;1916.6)				

We report for various asset correlation levels ϱ and confidence levels q the VaRs under the KMV framework (second column), the comonotonic VaRs (third column) and the VaR bounds in the unconstrained and the constrained case (in the last four columns between brackets – K reflects the number of moments of the portfolio sum that are known). The VAR bounds are obtained using Algorithm 1.

Outline

VaR bounds with marg. inform.

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Conclusion:

- impact of variance and higher order moment constraints on VaR bounds
- considerable amount of model risk
- knowledge of marginals + variance (moments) does not always allow to determine VaR's with confidence
- standard risk methods (based on factor models) like KMV, Beta, Credit Metrics report similarly (why? and on what basis?)
- Variance (moment) restriction is a (global) negative dependence assumption; it implies reduction of upper VaR bounds.

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

R ef er en c es

4. Improved standard bounds

How does positive/negative dependence information influence risk bounds?

X positive upper orthant dependence (PUOD)

if
$$\overline{F}_X(x) = P(X > x) \ge \prod_{i=1}^n P(X_i > x_i) = \prod_{i=1}^n \overline{F}_i(x_i)$$

X positive lower orthant dependence (PLOD)

$$\text{ if } F_X(x) \geq \prod_{i=1}^n F_i(x_i), \quad \forall x \\$$

X POD if X PLOD and PUOD

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved standard bounds

One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

R ef er e n c e s

4.1 One-sided dependence information

$$F = F_X, \ \overline{F} = \overline{F}_X$$

one-sided dependence information Let G, H be increasing functions, $F^- \leq G, H \leq F^+$

 $\begin{cases} G \leq_{\text{PLOD}} F \to \text{positive dependence restriction} & (\text{lower tail}) \\ G \leq_{\text{PUOD}} F \to \text{positive dependence restriction} & (\text{upper tail}) \\ \text{example:} & G(x) = \prod F_i(x_i), X \text{ is POD} \end{cases}$

similarly:

 $F \leq_{\mathrm{PLOD}} H, F \leq_{\mathrm{PUOD}} H \rightarrow$ negative dependence restriction

Williamson, Downs (1990), Denuit, Genest, Marceau (1999), Denuit, Dhaene, Ribas (2001), Embrechts, Höing, Juri (2003), Rü (2005), Embrechts, Puccetti (2006), Puccetti, Rü (2012)

© Rüschendorf, Uni Freiburg; 32

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

One sided (Partial) Two-sided

Partially specified risk factor mod.

```
Subgroup
structure
models
```

Theorem (improved standard bounds)

X risk vector, marginals $X_i \sim F_i$, $G \uparrow$, $F^- \leq G \leq F^+$, then a) If $G \leq_{PLOD} F_X$, then $P\left(\sum_{i=1}^d X_i \leq s\right) \geq \bigvee G(s);$ b) If $G \geq_{PUOD} F_X$, then $P\left(\sum_{i=1}^d X_i < s\right) \leq 1 - \bigvee \overline{G}(s);$

c) If G is POD, then

$$\bigvee \left(\prod_{i=1}^{d} F_i\right)(s) \le P\left(\sum_{i=1}^{d} X_i \le s\right),$$

$$P\left(\sum_{i=1}^{d} X_i < s\right) \le 1 - \bigvee \left(\prod_{i=1}^{d} \overline{F}_i\right)(s).$$

$$U(s) := \{x \in \mathbb{R}^n; \sum_{i=1}^n x_i = s\}, \\ \bigwedge G(s) := \inf_{x \in U(s)} G(x) \qquad \underline{G-infimal convolution}, \\ \bigvee G(s) := \sup_{x \in U(s)} G(x) \qquad \underline{G-supremal convolution}$$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

R ef er e n c e s

Improved Fréchet bounds:

- higher dimensional marginals various types of Bonferroni bounds
- parameter uncertainty
- 'known domains'

$$F(x) = \Gamma(x), \quad x \in S$$
(or " \leq " or " \geq ")

 $d \ge 2$ Puccetti, Rü, Manko (2016), Lux, Papapantoleon (2016)

digital options on default times for bounds

result: improved VaR-bounds for options

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Model for lower bounds

Bignozzi, Puccetti, Rü (2014)

$$X = (X_1, \dots, X_d)$$
 risk vector, $F_i = F_{X_i}$
 $\{1, \dots, d\} = \bigcup_{j=1}^k I_j$ k-subgroups
 $Y = (Y_1, \dots, Y_d)$ satisfies:
 $F_Y(x) = \prod_{i=1}^k \min_{i \in I_i} G_j(x_i)$

i.e. - Y has k independent, homogenous subgroups - components within subgroups comonotonic

Assumption: (*) $Y \leq X$, positive dependence restriction where \leq is \leq_{uo} or \leq_{lo} , typically: $F_i = G_j$ for $i \in I_j$

If k = d and $F_j = G_j$ then $(*) \sim$ to PUOD resp. PLOD of X k = 1 and $F_i = G_j \Rightarrow X$ comonotonic

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

R ef er e n c e s

Theorem (analytical bounds)

If
$$Y \leq_{lo} X$$
, $S = \sum_{i=1}^{d} X_i$, then

$$\mathsf{VaR}_lpha(\mathcal{S}) \leq \inf_{\mathfrak{A}_lpha} \sum_{j=1}^k n_j G_j^{-1}(u_j)\,, \quad n_j = |I_j|$$

$$\mathfrak{A}_{\alpha} = \left\{ u \in [\alpha, 1]^k; \prod_{j=1}^k u_j = \alpha \right\}$$
 similar lower bounds.

simplified formula: Puccetti, Rü, Manko (2016)

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

Improved standard bounds

One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

R ef er e n c e s
Example: Pareto portfolio

lower bounds, homogeneus portfolio, d Pareto(2) risks, k subgroups, d/k variables in each subgroup

d = 8	k	= 1	k = 2		<i>k</i> = 4		k = 8		
	$\underline{\text{VaR}}_{\alpha}$	$\mathrm{VaR}^{\mathrm{lb}}_{\alpha}$	$\underline{\text{VaR}}_{\alpha}$	$\mathrm{VaR}^{\mathrm{lb}}_{\alpha}$	$\underline{\text{VaR}}_{\alpha}$	VaR^{lb}_{α}	$\underline{\text{VaR}}_{\alpha}$	$\mathrm{VaR}^{\mathrm{lb}}_{\alpha}$	
$\alpha = 0.990$ $\alpha = 0.995$ $\alpha = 0.999$	9.00 13.14 30.62	72.00 105.14 244.98	9.00 13.14 30.62	36.00 52.57 122.49	9.00 13.14 30.62	18.00 26.28 61.25	9.00 13.14 30.62	9.00 13.14 30.62	

lower bounds, inhomogenous portfolio, $d/2 \operatorname{Exp}(2)$ risks and $d/2 \operatorname{Exp}(4)$ risks

d = 8	<i>k</i> :	= 1	<i>k</i> =	k = 2		k = 4		k = 8	
	$\underline{\text{VaR}}_{\alpha}$	VaR^{lb}_{α}	$\underline{\text{VaR}}_{\alpha}$	$\mathrm{VaR}^{\mathrm{lb}}_{\alpha}$	$\underline{\text{VaR}}_{\alpha}$	$\mathrm{VaR}^{\mathrm{lb}}_{\alpha}$	$\underline{\text{VaR}}_{\alpha}$	VaR^{lb}_{α}	
$\alpha = 0.990$	2.30	13.82	2.30	9.21	2.30	4.61	2.30	2.30	
$\alpha = 0.995$	2.65	15.89	2.65	10.60	2.65	5.30	2.65	2.65	
$\alpha=0.999$	3.45	20.72	3.45	13.82	3.45	6.91	3.45	3.45	

essential improvement of lower bounds for k = 1, 2, 4; POD alone does not improve lower bounds

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Stronger positive/negative dependence conditions

 $X = (X_1, \dots, X_n)$ (sequentially) **positive cumulative** dependent (PCD) if

$$P\left(\sum_{i=1}^{k-1} X_i > t_1 \mid X_k > t_2\right) \ge P\left(\sum_{i=1}^{k-1} X_i > t_1\right), \quad 2 \le k \le n$$

modification of PCD in Denuit, Dhaene, Ribas (2001) (sequent.) negative cumulative dependent (NCD) if "≤"

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Proposition

a) If X is PCD, then $S_n^\perp = \sum_{i=1}^n X_i^\perp \leq_{\rm cx} S_n \leq_{\rm cx} S_n^c = \sum_{i=1}^n X_i^c$

b) If X is NCD, then
$$S_n \leq_{cx} S_n^{\perp}$$

Consequence:

Corollary (positive dependence restriction)

If X is PCD, then

- a) $\mathsf{TVaR}_{\alpha}(S_n^{\perp}) \leq \mathsf{TVaR}_{\alpha}(S_n) \leq \mathsf{TVaR}_{\alpha}(S_n^c)$
- b) $LTVaR_{\alpha}(S_{n}^{\perp}) \leq LTVaR_{\alpha}(S_{n}) \leq VaR_{\alpha}(S_{n}) \leq TVaR_{\alpha}(S_{n}^{c})$

positive dependence information \rightarrow improved lower bounds for VaR and TVaR.

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Proposition (negative dependence restriction)

If X is NCD, then a) $S_n \leq_{cx} S_n^{\perp}$ and b) $VaR_{\alpha}(S_n) \leq TVaR_{\alpha}(S_n) \leq TVaR_{\alpha}(S_n^{\perp})$ negative dependence \rightarrow improved upper risk bounds

Remark

- a) Modification with negative depencence of sums of blocks
- b) PCD is not directly comparable to POD, POD does not imply convex ordering of sum
- c) A stronger ordering wcs = weak conditionally ordered in sequence; Rü (2004)

$$X \leq_{wcs} Y \Rightarrow \sum_{i=1}^{} X_i \leq_{cx} \sum_{i=1}^{} Y_i$$

This allows to extend to more general upper resp. lower restrictions. In particular $\leq_{WAS} \Rightarrow PCD$.

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Example

Expected shortfall bounds , $Y \leq_{wcs} X$ (d/2 Gamma(2,1/2) risks and d/2 Gamma(4,1/2))

d = 8	unconstrained		<i>k</i> = 1		<i>k</i> = 2		<i>k</i> = 4		<i>k</i> = 8		
	\underline{ES}_{α}	$\overline{\text{ES}}_{\alpha}$	DU-S	$\mathrm{ES}^{\mathrm{lb}}_{\alpha}$	∆DU-S	$\mathrm{ES}^{\mathrm{lb}}_{\alpha}$	∆DU-S	$\mathrm{ES}^{\mathrm{lb}}_{\alpha}$	ΔDU-S	$\mathrm{ES}^{\mathrm{lb}}_{\alpha}$	∆DU-S
$\alpha = 0.990$ $\alpha = 0.995$ $\alpha = 0.999$	12.00 12.00 12.00	38.27 41.64 49.27	26.27 29.64 37.27	38.27 41.64 49.27	-100% -100% -100%	29.15 31.15 35.63	-65.3% -64.6% -63.4%	23.29 24.52 27.21	-43.0% -42.2% -40.8%	19.56 20.33 22.02	-28.8% -28.1% -26.9%

positive dependence, improvement of lower bounds

 $\mathsf{DU-S} = \overline{\mathsf{VaR}}_{\alpha} - \underline{\mathsf{VaR}}_{\alpha'}$

 $\Delta DU-S =$ reduction of DU-Spread by positive dependence

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

4.2 (Partial) independence structures

Puccetti, Rü, Small, Vanduffel (2014)

Assumption I)

- a) independent subgroups I_1, \ldots, I_k
- b) any dependence within subgroups

Theorem

Under independence assumption I)

$$egin{aligned} \mathsf{a}^{\prime} &:= \mathsf{LTVaR}_{lpha}(S^{c,k}) \leq \underline{\mathsf{VaR}}_{lpha}^{\prime} \leq \overline{\mathsf{VaR}}_{lpha}^{\prime} \ &\leq b^{\prime} &:= \mathsf{TVaR}_{lpha}(S^{c,k}) \,. \end{aligned}$$

 $I_1 I_2 I_k$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

Improved standard bounds One sided

(Partial)

Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Gamma distributed groups:

d = 8			k = 1		<i>k</i> = 2		<i>k</i> = 4	
	VaR^+_lpha , \overline{V}	$/aR_{\alpha}$	b ¹	e_{α}	b ¹	e_{lpha}	b ¹	e_{lpha}
$\alpha = 0.990$	33.37 3	38.26	38.27	_	29.15	-23.8%	23.29	-39.1%
lpha= 0.995	36.82 4	1.63	41.63	_	31.15	-25.2%	24.52	-41.1%
lpha= 0.999	44.59 4	9.27	49.27	_	35.63	-27.7%	27.21	-44.8%

 $d = 8, 4 \text{ Gamma}(2,1/2), 4 \text{ Gamma}(4,1/2), e_{\alpha} = 1 - \frac{b' - a'}{\text{VaR}_{\alpha} - \text{VaR}_{\alpha}}$

Pareto distributed groups:

(a'; b')	k = 1	<i>k</i> = 2	k = 5	k = 10	k = 25	<i>k</i> = 50
$ \begin{aligned} \alpha &= 0.95 \\ \alpha &= 0.99 \\ \alpha &= 0.995 \end{aligned} $	(18.23; 153.72) (22.24; 297.84) (23.17; 388.91)	(20.21;116.32) (23.14;208.2) (23.8;269.08)	(22.03; 81.54) (23.92; 132.28) (24.31; 163.37)	(22.95;63.93) (24.28;95.97) (24.55;115.34)	(23.76; 48.57) (24.59; 65.87) (24.74; 76.06)	(24.15;41.09) (24.73;51.98) (24.83;58.25)
$(\underline{VaR}_{\alpha}; \overline{VaR}_{\alpha})$						
$\begin{array}{l} \alpha = 0.95 \\ \alpha = 0.99 \\ \alpha = 0.995 \end{array}$	(18.24;153.3) (22.26;297.64) (23.2;388)					

Monte Carlo simulation of marginal and independence bounds, Pareto case with d = 50, $\theta_i = \theta = 3$ and $c_i = 1$ for i = 1, ..., k.

Outline

VaR bounds with marg. inform.

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

Improved standard bounds One sided

(Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

$(\underline{e}^{\alpha}, \overline{e}^{\alpha})$	k = 1	<i>k</i> = 2	k = 5	k = 10	k = 25	k = 50
$\alpha = 0.95$	(-0.05; -0.27)	(10.8;24.12)	(20.78;46.81)	(25.82; 58.3)	(30.26; 68.32)	(32.4; 73.2)
$\alpha = 0.99$	(-0.09; -0.07)	(3.95; 30.05)	(7.46; 55.56)	(9.07;67.76)	(10.47; 77.87)	(11.1; 82.54)
$\alpha = 0.995$	(-0.13; -0.23)	(2.59; 30.65)	(4.78;57.89)	(5.82; 70.27)	(6.64;80.4)	(7.03;84.99)

Monte Carlo simulation of marginal and independence bounds, Pareto case with d = 50, $\theta_i = \theta = 3$ and $c_i = 1$ for $i = 1, \ldots, k$, $\overline{e}^{\alpha} = \frac{\sqrt{v_{RR}} - b}{v_{RR}}$.

Partial independent substructures:

 $\{1, \dots, n\} = \bigcup_{j=1}^{n} I_{j}, \ (X_{I_{j}}) \text{ independent for } j \in H \subset \{1, \dots, k\}$

Partial independent substructures.

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

Improved standard bounds One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Theorem (partial independent substructures)

For $\alpha \in (0, 1)$ the following VaR bounds hold: $a^{p} = a^{p}(\alpha, H) := \sum_{i \in \{1, \dots, k\} \setminus H} LTVaR(S_{i}^{c}) + LTVaR(\sum_{i \in H} S_{i}^{c})$ $\leq VaR(S_{d}) \leq \sum_{i \in \{1, \dots, k\} \setminus H} TVaR(S_{i}^{c}) + TVaR(\sum_{i \in H} S_{i}^{c})$ $=: b^{p}(\alpha, H) = b^{p}.$

$$\sum_{i \in H} S_i^c \text{ is an independent sum,}$$

$$\mathsf{TVaR}(S_i^c) = \sum_{j=1}^{n_i} \mathsf{TVaR}(X_{ij}) \text{ and } \mathsf{LTVaR}(S_i^c) = \sum_{j=1}^{n_i} \mathsf{LTVaR}(X_{ij})$$
are simple to calculate.

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

Improved standard bounds One sided

(Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

	$\alpha = 0.95$	$\alpha = 0.995$	$\alpha = 0.995$
	$F_i \sim \text{Gamma}(\kappa_i^{(1)}, 1)$	$F_i \sim N(\mu_i, 1)$	$F_i \sim N(0,1)$
(a'; b')	(27.58;76.02)	(149.67; 214.67)	(-0.33; 64.66)
$H = \{2, 3, 4, 5\}$	(26.83;90.4)	(149.57;236.76)	(-0.44;86.76)
$H = \{3, 4, 5\}$	(25.85;108.7)	(149.47; 257.93)	(-0.55; 107.93)
$H = \{4, 5\}$	(24.8;128.81)	(149.36;277.66)	(-0.64; 127.66)
$H = \{5\}$	(23.75;148.66)	(149.28;294.6)	(-0.73; 144.60)
$(\underline{VaR}_{\alpha}; \overline{VaR}_{\alpha})$	(23.76;148.63)	(149.29;294.59)	(-0.71; 144.59)

Partial independence bounds with variation of independent substructure, d = 50, k = 5, $\mu_i = i$.

Remark

a) partial independent graph structures

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

Improved standard bounds One sided

(Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

b) combination with variance bounds

Variance constrained versus independence + variance constrained bounds a^V , $a^{p,V}$ resp. b^V , $b^{p,V}$.

		d = 10	d = 100
<i>s</i> _v *	$\begin{array}{l} \alpha = 0.95 \\ \alpha = 0.99 \\ \alpha = 0.995 \end{array}$	22.39 7.17 4.20	2239.26 717.49 420.27

Approximations of critical value s_V^* by Monte Carlo simulation with 10² repetitions of 10⁵ simulations.

				d = 100, k = 10			
		$s^2 = 20$	$s^2 = 50$	$s^{2} = 100$	$s^2 = 200$	$s^2 = 500$	
$\left(a^{p,V};b^{p,V}\right)$	$\begin{array}{l} \alpha = 0.95 \\ \alpha = 0.99 \\ \alpha = 0.995 \end{array}$	$ \begin{array}{ c c } (-1.03; 19.49) \\ (-0.45; 44.5) \\ (-0.32; 63.09) \end{array} $	$\substack{(-1.62; 30.82)\\(-0.71; 70.36)\\(-0.46; 91.45)}$	(-2.29; 43.59) (-0.85; 84.28) (-0.46; 91.45)	$\begin{pmatrix} -3.24; 61.64 \end{pmatrix}$ (-0.85; 84.28) (-0.45; 91.45)	(-3.43; 65.23) (-0.86; 84.28) (-0.46; 91.45)	
$(a^V; b^V)$	$\begin{array}{l} \alpha = 0.95 \\ \alpha = 0.99 \\ \alpha = 0.995 \end{array}$	$ \begin{array}{ c c } (-1.03; 19.49) \\ (-0.45; 44.5) \\ (-0.32; 63.09) \end{array} $	$\substack{(-1.62; 30.82)\\(-0.71; 70.36)\\(-0.5; 99.75)}$	(-2.29; 43.59) (-1.01; 99.5) (-0.71; 141.07)	$\substack{(-3.24;61.64)\\(-1.42;140.71)\\(-1;199.5)}$	(-5.13; 97.47) (-2.25; 222.49) (-1.45; 289.2)	

Approximation of $(a^{p,V}, b^{p,V})$ by Monte Carlo simulation with 10^2 iterations of 10^5 simulations. (C) Rüschendorf, Uni Freiburg; 47

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

Improved standard bounds One sided

(Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Examples (application to insurance portfolio)

 $d = 11, \ k = 4$

Insurance risk portfolio.

	b ¹	VaR^+_{α}	\overline{VaR}_{α}	$b^{I}/\overline{VaR}_{lpha}-1$
lpha= 99%	147.34 - 148.46 - 149.66	168.37	209.59	-29.2%
	b'	$ $ VaR $^+_{\alpha}$	\overline{VaR}_{α}	$\Delta VaR_lpha(L_t^+)$
lpha= 99.5%	173.37 - 175.18 - 176.96	202.89	249.55	-29.8%
	b ¹	$ $ VaR ⁺ _{α}	VaR_{α}	$\Delta VaR_{lpha}(L_6^+)$
lpha= 99.9%	250.41 - 256.04 - 262.47	304.63	367.70	-30.4%

upper bounds b', VaR^+_{α} = comonotonic VaR and \overline{VaR}_{α} for 11-dimensional insurance portfolio

Outline

VaR bounds with marg. inform.

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

Improved standard bounds One sided

(Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Comparison of independence and variance bounds

(a) $a^{p,V}(\alpha, s^2, k)$ and $a^V(\alpha, s^2)$ as function of s^2

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

Improved standard bounds One sided (Partial)

Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

4.3 Two-sided improved bounds

improved bounds: positive dependence: $G \leq F_X$ or $\overline{F}_X \geq \overline{G}$; or negative dependence

problem: needs strong positive dependence and d small

two-sided bounds: $\underline{Q} \leq C \leq \overline{Q}$, $\underline{Q}, \overline{Q}$ quasi-copulas

result: two-sided improved bounds based on multiset-inclusion exclusion principle

example:
$$1_{B_1 \cup B_2 \cup B_3} = 1_{B_1} + 1_{B_2} + 1_{B_3}$$

 $- 1_{B_1 \cap B_2} - 1_{B_2 \cap B_3} - 1_{B_1 \cap B_3} + 1_{B_1 \cap B_2 \cap B_3}$

needs upper and lower bounds! parsimonious representation \rightarrow reduction scheme

Lux, Rü (2018)

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

Improved standard bounds One sided (Partial) Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Examples

1. $C^*(u) - \delta \leq C \leq C^*(u) + \delta$, C^* Gaussian equi-correlated

	$\rho = -0.1$				$\varrho = 0.4$		$\rho = 0.8$		
	i. standard	scheme	im pr.	i. standard	scheme	im pr.	i. standard	scheme	im pr.
α	(low:up)	(low:up)	%	(low : up)	(bw : up)	%	(low : up)	(low:up)	%
0.95	3.4 : 45.0	8.2:24.8	60	3.6:41.2	7.2:28.1	44	7.8:31.4	9.2:26.2	28
0.99	9.0:106.2	15.9:56.7	58	9.0:105.3	14.9:80.8	32	17.4:84.9	18.6:82.2	6
0.995	13.3:153.0	19.0:90.0	49	13.3:153.0	18.0:153.0	3	23.4 : 126.0	22.8:125.0	0

Improved standard bounds on VaR of $X_1+\ldots+X_5$ and VaR estimates via reduction schemes for $\delta=0.0005$.

2. $C^{\underline{\Sigma}} \leq C \leq C^{\overline{\Sigma}}$, Gaussian-copula

	<u>e</u> = -	$-0.1, \overline{\varrho} = 0.2$	$\underline{\varrho} = 0.3, \ \overline{\varrho} = 0.5$			
α	i. standard (bw:up)	scheme (low : up)	impr. %	i. standard (low : up)	scheme (low:up)	impr %
0.95	3:32	8:26	38	1:30	7:29	24
0.99	9:74	20:52	51	2:74	18:63	37
0.995	13:104	26:70	52	3:104	25 : 86	40

Improved standard bounds on VaR of $X_1 + \ldots + X_4$ and VaR estimates computed via reduction schemes using $C^{\underline{\Sigma}}$ and $C^{\overline{\Sigma}}$.

3. Subgroup models, $C^{\theta_1} \leq C_m \leq C^{\theta_2}$ bounds for subgroups copulas by Frank-copulas

	<i>m</i> = 8			m = 4			<i>m</i> = 2		
α	i.standard	scheme	impr.	i. standard	scheme	impr.	i. standard	scheme	impr.
	(bw:up)	(low : up)	%	(low : up)	(low : up)	%	(low : up)	(low : up)	%
0.95	42:113	59:86	62	22:150	39:112	43	12:193	28:150	33
0.99	82:210	108:147	70	42:264	67:175	51	21:329	42 : 218	43
0.995	105:266	135:180	72	53:329	83:206	55	43:403	51 : 252	44

Improved standard bounds and VaR estimates via reduction schemes for $X_1 + \ldots + X_{16}$ given distributions of subgroups.

P.

Outlin

VaR bounds with marg. inform.

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

Improved standard bounds One sided

(Partial)

Two-sided

Partially specified risk factor mod.

Subgroup structure models

Conclusion

5. Partially specified risk factor models

Bernard, Rü, Vanduffel, Wang (2017) risk vector $X = (X_1, \dots, X_n)$, risk factor Z

factor model: $X_j = f_j(Z, \varepsilon_j)$,

Z systemic risk factor, ε_j individual risk factors

Assumption: known $H_j \sim (X_j, Z)$, $1 \le j \le n$ but not joint distribution! \rightarrow marginals F_j and $Z \sim G$ $H = (H_j), F = (F_j)$, conditional distribution $F_{j|Z}$ known $A(H) = \{(X, Z); (X_j, Z) \sim H_j, 1 \le j \le n\}$ partially specified risk factor model

$$\begin{cases} \overline{M}^{b}(t) = \sup\{P(S \ge t); (X, Z) \in A(H)\} \\ \overline{\operatorname{Var}}^{b}_{\alpha} = \sup\{\operatorname{VaR}_{\alpha}(S); (X, Z) \in A(H)\} \end{cases}$$

similarly $\overline{VaR}^{b}_{\alpha}$, $\overline{TVaR}^{b}_{\alpha}$, $\underline{VaR}^{b}_{\alpha}$, ...

Outline

VaR bounds with marg. inform.

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

_ .

© Rüschendorf, Uni Freiburg; 52

Proposition (improvement over marginal bounds)

$$\overline{M}^{b}(t) \leq \overline{M}(t) := \sup\{P(S \geq t); X \in A_{1}(F)\}$$
$$\overline{\operatorname{VaR}}_{\alpha}^{b} \leq \overline{\operatorname{VaR}}_{\alpha}, \quad \overline{\operatorname{TVaR}}_{\alpha}^{b} \leq \overline{\operatorname{TVaR}}_{\alpha}$$

Let
$$F_{j|z} = F_{X_j|Z=z}$$
, $F_z = (F_{j|z})$
 $\overline{M}_z(t) = \sup \left\{ P\left(\sum_{j=1}^n X_{j,z} \ge t\right); (X_{j,z})_j \in A_1(F_z) \right\}$
similarly $\underline{M}_z(t)$, $\overline{\operatorname{VaR}}_\alpha(S_z), \dots, S_z = \sum X_{j,z}$

Proposition (sharp tail risk bounds)

We have
a)
$$\overline{M}^{b}(t) = \int \overline{M}_{z}(t) dG(z), \quad \underline{M}_{b}(t) = \int \underline{M}_{z}(t) dG(z)$$

b) $\overline{\operatorname{VaR}}_{\alpha}^{b} = (\overline{M}^{b})^{-1}(1-\alpha), \quad \underline{\operatorname{VaR}}_{\alpha}^{b} = (\underline{M}^{b})^{-1}(1-\alpha)$
 $(\overline{M}^{b})^{-1}(1-\alpha) = \sup\{t : \overline{M}^{b}(t) > 1-\alpha\}$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models Conclusion

References

© Rüschendorf, Uni Freiburg; 53

Mixture representation:

$$\begin{array}{l} X = X_Z \text{ with } X_z = (X_{j,z}) \in \mathcal{A}(F_z), \ Z \bot (X_{j,z}). \\ F_S = \int F_{S_z} dG(z) \\ \alpha \in \Phi, \ b_\alpha := \mathrm{ess\,sup}_{z,G} \, \mathrm{VaR}_{\alpha(z)}(S_z) \quad \alpha \text{ defined on range of } Z. \end{array}$$

Proposition (VaR representation of mixtures)

$$\mathsf{VaR}_{\beta}(\mathcal{S}_{Z}) = b^{*} := \inf \left\{ b_{lpha}; lpha \in \Phi, \int lpha(z) d\mathcal{G}(z) \geq eta
ight\}$$

$$\begin{aligned} q_z(\alpha) &:= \operatorname{VaR}_{\alpha}(S_z) \uparrow_{\alpha} \\ \gamma \in \mathbb{R} : \gamma_z = q_z^{-1}(\gamma) = F_{S_z}(\gamma) \\ & \text{inverse } \gamma\text{-quantile of } S_z \sim \text{probability on } \{Z = z\} \\ \gamma^*(\beta) &:= \inf \Big\{ \gamma; \int \gamma_z dG(z) \geq \beta \Big\}, \end{aligned}$$

i.e. choose smallest γ such that total probability of test γ_z

$$\int \gamma_z dG(z) \geq \beta.$$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

mproved standard oounds

Partially specified risk factor mod.

Subgroup structure models Conclusion

Theorem (worst case VaR in factor model)

a)
$$\operatorname{VaR}_{\beta}(S_{Z}) = \gamma^{*}(\beta)$$

b) $\overline{\operatorname{VaR}}_{\beta}^{b} = \overline{\gamma}^{*}(\beta) = \inf\{\gamma; \int \overline{\gamma}_{z} dG(z) \ge \beta\}$
 $\overline{q}_{z}(\alpha) = \overline{\operatorname{VaR}}_{\alpha}(S_{z}), \overline{\gamma}_{z} = (\overline{q}_{z})^{-1}(\gamma)$
worst case inverse γ -quantile

simplified upper bound:

$$\begin{split} t_{z}(\beta) &= \mathsf{TVaR}_{\alpha}(S_{z}^{c}) = \sum_{j=1}^{n} \mathsf{TVaR}_{\alpha}(X_{j,z}) \\ \Rightarrow q_{z}(\beta) \leq t_{z}(\beta) \\ \Rightarrow \overline{\gamma}^{*}(\beta) \leq \gamma_{t}^{*}(\beta) = \inf\left\{\gamma; \int t_{z}^{-1}(\gamma) dG(z) \geq \beta\right\} \end{split}$$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Corollary

a)
$$\overline{\operatorname{VaR}}^b_{\alpha} = \overline{\gamma}^*(\beta) \le \gamma^*_t(\beta)$$

b) $T_z^+ := \operatorname{TVaR}_U(S_z^c), \ U \sim U(0,1), \ then$
 $\operatorname{VaR}_{\beta}(T_Z^+) = \gamma^*_t(\beta)$

various methods to calculate these bounds

Example (Pareto distributions: *p* parameter for dependence)

$$\begin{split} X_i^1 &= (1-Z)^{-1/3} - 1 + \varepsilon_i^1 \\ X_i^2 &= I((1-Z)^{-1/3} - 1) + (1-I)(Z^{-1/3} - 1) + \varepsilon_i^2 \\ \varepsilon_i^j &\sim \mathsf{Pareto}(\theta_2) \\ \varepsilon_i^1, \varepsilon_i^2 &\sim \mathsf{Pareto}(4), \ Z \sim U(0,1) \\ I \sim \mathfrak{B}(1,p), \quad \Delta := 1 - \frac{\mathsf{VaR}_\alpha(T_Z^+) - \mathsf{VaR}_\alpha(T_Z^-)}{\mathsf{TVaR}_\alpha(S^c) - \mathsf{LTVaR}_\alpha(S^c)} \end{split}$$

© Rüschendorf, Uni Freiburg; 56

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

bounds for the variance, TVaR at 95% and TVaR at 99%

p dependence parameter; $p=0\sim$ strong negative dependence; $p=1\sim$ strong positive dependence

<i>n</i> = 50	VaR_{α}	$ $ TVaR $_{\alpha}(S^{c})$	$VaR_{\alpha}(T_{Z}^{+})$	LTVaR $_{\alpha}(S^{c})$	$VaR_{lpha}\left(T_{Z}^{-} ight)$	Δ
p = 0.0	157	378	266	68	149	62%
p = 0.2	158	354	267	69	151	59%
<i>p</i> = 0.4	164	340	271	70	157	58%
<i>p</i> = 0.5	169	338	274	70	161	58%
<i>p</i> = 0.6	175	340	278	70	167	59%
<i>p</i> = 0.8	189	354	289	69	181	62%
p = 1.0	205	378	300	68	198	67%

upper and lower VaR bounds, $\theta_2 = 4$, VaR $_{\alpha}$ independence

$p \approx 0 \Rightarrow$ strong negative dependence, $p \approx 1 \Rightarrow$ strong positive dependence

Outlin

VaR bounds with marg. inform.

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

References

© Rüschendorf, Uni Freiburg; 57

Applications and generalizations

generalized mixture model: $Z \in D = D_1 + D_2 + D_3$

$$P^X = p_1 P^1 + p_2 P^2 + p_3 P^3, \quad p_i = P(Z \in D_i)$$

 $egin{aligned} z \in D_1 \Rightarrow P_z^1 &= P^1 & ext{fixed distribution} \\ z \in D_2 \Rightarrow P_z^2 \in \mathcal{F}(F_z) & ext{risk factor information} \\ z \in D_3 \Rightarrow P_z^3 \in \mathcal{F}((G_j)) & ext{marginal information} \end{aligned}$

special case: Bernard, Vanduffel (2014) central part $\{Z = 0\} = \{X \in A\} \rightarrow P^1$ $\{Z = 1\} = \{X \in A^c\}$ only marginal information

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Consequence:

a)
$$\overline{M}(t) = p_1 P^1 \Big(\sum_{j=1}^n X_j \ge t \Big) + \int_{D_2} \overline{M}_{2,z}^b(t) dP^Z(z) + p_3 \overline{M}_3(t) dP^Z($$

b)
$$S = \sum_{i=1}^{n} X_i \leq_{cx} I(Z \in D_1)F_1^{-1}(U) + I(Z \in D_2)S_{2,Z}^c + I(Z \in D_3)S_3^c$$

 $S_{2,z}^c = \sum_{j=1}^n F_{j|z}^{-1}(U)$, $S_{2,Z}^c \sim$ conditionally comonotone

Examples (mixture models)

n

$$\begin{split} X_j &= f_j(Z, \varepsilon_j) \\ \textbf{Bernoulli mixture model (credit risk)} \\ &P(X = x \mid Z = z) = \prod_{i=1}^n p_i(z)^{x_i} (1 - p_i(z))^{1 - x_i} \\ \textbf{mult. variance mixture model} \\ &X = \mu + \sqrt{W}\varepsilon, \quad \varepsilon \sim N(0, \Sigma), \quad W \text{ stochastic volatility} \end{split}$$

© Rüschendorf, Uni Freiburg; 59

Outline

VaR bounds with marg. inform.

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models Conclusion

6. Subgroup structure models

subgroup models in: Bignozzi, Puccetti, Rü (2015) and Puccetti, Rü, Small, Vanduffel (2015) subgroups $\{1, \ldots, d\} = \bigcup_{i=1}^{k} I_i$, risk vector X

PRSV: $\{X_{I_i}\}$ independent, within subgroups any dependence

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

stochastic ordering within subgroups and between subgroups Rü, Witting (2017)

X risk vector, Z comparison vector, split into subgroups

 $\begin{aligned} Y_i &= \sum_{j \in I_i} X_j, \quad W_i = \sum_{j \in I_i} Z_j \quad \text{subgroup sums} \\ Y_i &\sim G_i, \quad W_i \sim H_i, \quad Y = (Y_1, \dots, Y_k), \quad W = (W_1, \dots, W_k) \\ S &= \sum_{i=1}^k Y_i, \quad T = \sum_{i=1}^k W_i \end{aligned}$

Ordering within subgroups: $G_i \leq H_i$ (resp. $G_i \geq H_i$) plus ordering of copulas: $C_Y \leq C_W$ (resp. = or \geq) between subgroups

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Stochastic Ordering

$$X = (X_1, \dots, X_m), \quad Y = (Y_1, \dots, Y_m)$$

X conditional increasing (CI) if

$$X_i \uparrow_{\mathsf{st}} X_J, \quad \forall J \subset \{1, \ldots, m\} \setminus \{i\}$$

X conditional increasing in sequence (CIS) if

$$X_i \uparrow_{\mathsf{st}} (X_1, \ldots, X_{i-1}), \quad \forall i \leq m$$

 $X \leq_{wcs} Y$ weakly conditional in sequence order if $Cov(1_{(X_i > x_i)}, f(X_{i+1}, ..., X_m)) \leq Cov(1_{(Y_i > x_i)}, f(Y_{i+1}, ..., Y_m))$ for all $f \uparrow$

X weakly associated in sequence (WAS) if $X^{\perp} \leq_{\sf wcs} X$

$$\Leftrightarrow P^{X_{(i+1)}} \leq_{\text{st}} P^{X_{(i+1)}|X_i > x_i}, \quad \forall i, \forall x_i,$$
$$X_{(i+1)} = (X_{i+1}, \dots, X_m)$$
© Rüschendorf, Uni Freiburg; 62

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Theorem (relations between orderings)

a)
$$CI \Rightarrow CIS \Rightarrow WA \Rightarrow WAS$$

b) $\forall i : X_i \stackrel{d}{=} Y_i$ and $X \leq_{wcs} Y \Rightarrow X \leq_{sm} Y$
c) $\forall i : X_i \leq_{cx} Y_i$ and $X \leq_{wcs} Y \Rightarrow X \leq_{dcx} Y$
d) If $C_X = C_Y$ is CI and $X_i \leq_{cx} Y_i$, $\forall i$ then $X \leq_{wcs} Y$
e) $C_X \leq_{sm} C_Y$ and C_Y is CI,
then $X_i \leq_{cx} Y_i \Rightarrow X \leq_{wcs} Y$

Remark

c), d) implies:
$$C_X = C_Y$$
 is CI, $X_i \leq_{cx} Y_i$
 $\Rightarrow X \leq_{dcx} Y$ (Müller, Scarsini (2001))

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

A) Elliptical Copulas

$$S \sim E_d(\mu, \Sigma, \Phi) \text{ if } \varphi_X(t) = e^{it^\top \mu} \Phi(t^\top \Sigma t)$$

 $\Rightarrow X \stackrel{d}{=} \mu + RAU, \quad A^\top A = \Sigma, \ U \sim \text{unif}(S_{d-1}) \text{ and } R \perp U,$
 $\Sigma \sim \text{correlation matrix of } X$

 $A \in \mathbb{R}^{d \times d}$ **M**-matrix, if $a_{ij} \leq 0, \forall i \neq j$ and principal minors positive.

Proposition

 $X \sim E_d(0, \Sigma, \Phi)$, then X is $CI \Leftrightarrow \Sigma^{-1}$ is an M-matrix

Rü (1981) for multivariate normal

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Theorem

$$\begin{aligned} & X \sim E_d(\mu_1, \Sigma_1, \Phi), \ Y \sim E_d(\mu_2, \Sigma_2, \Phi) \\ & \text{a)} \ \mu_1 \leq \mu_2, \ \Sigma_1 \leq_{\mathsf{psd}} \Sigma_2 \Rightarrow X \leq_{\mathsf{icx}} Y \\ & \text{b)} \ \mu_1 = \mu_2, \ \sigma_{ij}^{(1)} \leq \sigma_{ij}^{(2)}, \forall i \neq j, \ \sigma_{ii}^{(1)} = \sigma_{ii}^{(2)}, \forall i, \\ & \text{then } X \leq_{\mathsf{sm}} Y \\ & \text{c)} \ \mu_1 = \mu_2, \ \sigma_{ij}^{(1)} \leq \sigma_{ij}^{(2)}, \forall i, j, \ \text{then } X \leq_{\mathsf{dcx}} Y \end{aligned}$$

a) Pan, Qiu, Hu (2016);
b), c) Block, Sampson (1988);
Müller,Scarsini (2000) normal case ;
Ansari, Rüschendorf (2019) general case

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

b) Archimedean Copulas

$$C(x_1,\ldots,x_d)=\Psi\Big(\sum_{i=1}^d\Psi^{-1}(x_i)\Big)$$

Theorem

$${\mathcal C}={\mathcal C}_{\Psi},\, \Psi\in {\mathcal C}^d({\mathbb R}_+)$$
, then

- a) \mathcal{C}_{Ψ} is $\mathcal{C}l \Leftrightarrow (-1)^{d-1} \Psi^{(d-1)}$ log-convex
- b) Ψ completely monotone, i.e. d-alternating, $\forall d$, then C_{Ψ} is CI

Müller, Scarsini (2001, 2005)

Theorem

 $C_i = C_{\Phi_i}$ Archimedean copulas, Φ_i completely monotone If $\Phi_1^{-1} \circ \Phi_2$ completely monotone, then $C_1 \leq_{sm} C_2$

Wei, Hu (2002)

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Dependence structures within subgroups

 $C = C_Y$ copula between subgroups fixed

Proposition

 $\begin{array}{l} C=C_{Y} \text{ is WAS (or CIS)}\\ \text{a) If } Y_{i}\leq_{cx}W_{i},\, 1\leq i\leq k,\, C_{W}=C=C_{Y},\, then \end{array}$

$$S = \sum_{i=1}^k Y_i \leq_{\mathsf{cx}} T = \sum_{i=1}^k W_i$$

in particular: $LTVaR_{\alpha}(T) \leq VaR_{\alpha}(S) \leq TVaR_{\alpha}(T)$ b) If $W_i \leq_{cx} Y_i$. $1 \leq i \leq k$ and $C_W = C = C_Y$, then

 $T \leq_{\mathsf{cx}} S$ and $\mathsf{TVaR}_{lpha}(T) \leq \mathsf{TVaR}_{lpha}(S)$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Remark

a)
$$X_{I_i} \leq_{wcs} Z_{I_i}$$
, $X_j \leq_{cx} Z_j$
 $\Rightarrow X_{I_i} \leq_{dcx} Z_{I_i}$ and $Y_i \leq_{cx} W_i$

Similarly:
$$X_{I_i} \leq_{sm} Z_{I_i} \Rightarrow Y_i \leq_{cx} W_i$$

In particular unknown dependence within subgroups, then

$$X_{I_i} \leq_{\text{sm}} Z_{I_i} = (F_j^{-1}(U_i))_{j \in I_i}$$

$$\Rightarrow Y_i \leq_{\text{cx}} W_i = \sum_{j \in I_i} F_j^{-1}(U_i)$$

then:
$$X \leq_{\sf sm} Z$$
 and $S \leq_{\sf cx} T$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Remark

b) partially specified risk factor models within subgroups

Bernard, Rü, Vanduffel, Wang (2016) $X_i = f_j(Z_i^f, \varepsilon_j), j \in I_i$, partially specified risk factor models $\Rightarrow Y_i = \sum_{j \in I_i} X_j \leq_{cx} W_i = \sum_{j \in I_i} X_{j|Z_i^f}^c$ conditionally comonotone $C = C_W, R_z^- = LTVaR_V(S_z^c), R_z^+ = TVaR_V(S_z^c),$ $V \sim U(0, 1), z = (z_i), then$

$$\operatorname{VaR}_{lpha}(R_{Z^f}^-) \leq \operatorname{VaR}_{lpha}(S) \leq \operatorname{VaR}_{lpha}(R_{Z^f}^+)$$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Example

d risks, k independent subgroups I_i partially specified risk factor models within subgroups

half of
$$X_j: X_j = (1 - U_i)^{-1/3} - 1 + \varepsilon_j$$

half of $X_j: X_j = p((1 - U_i)^{-1/3} - 1) + (1 - p)(U_i^{-1/3} - 1) + \varepsilon_j$
 $\varepsilon_j \sim Pareto(4), p \in (0, 1)$
 $C = C^{\perp}$ independent subgroups copula, $C = C_Y = C_W$
$$\frac{p = 0.0 \quad p = 0.2 \quad p = 0.5 \quad p = 0.8 \quad p = 1.0}{(\underline{VaR}_{\alpha}, \overline{VaR}_{\alpha}) \quad (68; 392) \quad (69; 367) \quad (70; 349) \quad (69; 368) \quad (68; 391)}$$

Sharp VaR bounds with marginal information only $d = 100, \alpha = 0.95$.

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Example (cont.)

		p = 0.0	<i>p</i> = 0.2	p = 0.5	<i>p</i> = 0.8	p = 1.0
k = 1	$b(TVaR_{lpha})$	(68; 474)	(69; 376)	(70; 372)	(69: 384)	(68; 402)
	$b(TVaR^f_{lpha})$	(72; 297)	(72; 301)	(71: 320)	(69; 351)	(68; 376)
	$b(VaR^{f}_{lpha})$	(132; 263)	(134; 265)	(145; 273)	(164; 286)	(182; 296)
k = 2	$b(TVaR_{lpha})$	(72; 385)	(74; 295)	(74; 295)	(74; 301)	(73; 313)
	$b(TVaR^{f}_{lpha})$	(76; 231)	(75; 234)	(75; 247)	(74; 269)	(73; 287)
	$b(VaR^f_lpha)$	(121; 209)	(122; 210)	(130; 216)	(146; 227)	(158; 237)
k = 5	$b(TVaR_{lpha})$	(77; 305)	(77; 222)	(77; 226)	(77; 229)	(77; 234)
	$b(TVaR^{f}_{lpha})$	(79; 173)	(79; 174)	(78; 183)	(77; 197)	(77; 208)
	$b(VaR^f_lpha)$	(110; 161)	(110; 162)	(116; 167)	(125; 174)	(133; 180)
k = 10	$b(TVaR_{lpha})$	(79; 266)	(79; 186)	(79; 193)	(79; 193)	(79; 195)
	$b(TVaR^f_{lpha})$	(80; 144)	(80; 145)	(80; 151)	(79; 161)	(79; 169)
	$b(VaR^f_{lpha})$	(101; 137)	(102; 138)	(107; 141)	(113; 146)	(119; 151)

VaR bounds with and without factor model information for various group sizes, $d=100, \alpha=0.95, k=1,2,5,10.$

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Dependence structure between subgroups

$$C = C_Y, \quad D = C_W$$

Proposition

Let C or D be Cl a) $C \leq_{wcs} D$ and $Y_i \leq_{cx} W_i$, then $S = \sum_{i=1}^{k} Y_i \leq_{\mathsf{cx}} T = \sum_{i=1}^{k} W_i$ in particular: $LTVaR_{\alpha}(T) \leq Var_{\alpha}(S) \leq TVaR_{\alpha}(S) \leq TVaR_{\alpha}(T)$ b) $W_i <_{cx} Y_i, D <_{wcs} C, then$ $T \leq_{\mathsf{cx}} S$ and $\mathsf{TVaR}_{\alpha}(T) \leq \mathsf{TVaR}_{\alpha}(S)$.

Similar comparison also in terms of \leq_{sm}, \leq_{dcx}

Outlin

VaR bounds with marg. inform.

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

References

© Rüschendorf, Uni Freiburg; 72
Example

DC

 $X = (X_i), \qquad X_i \sim Pareto(3)$ assume: $C \leq_{wcs} D$ D Gauss- or t-copula and $\Sigma^{-1} M$ -matrix $\Rightarrow \quad D \ Cl$ D Clayton or Gumbel copula \Rightarrow completely monotone generator

nform.

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Example (cont.)

general dependence within subgroups

a) unconstrained bounds

d = 50

	$(\underline{VaR}_{\alpha}; \overline{VaR}_{\alpha})$	(a; b)
$\alpha = 0.95$	(18; 153)	(18; 154)
$\alpha = 0.99$	(22; 298)	(22; 298)
lpha= 0.995	(23; 388)	(22; 389)

b) $C \leq_{wcs} D = C^{\perp}$ independent subgroups

	<i>k</i> = 2	k = 5	k = 10	<i>k</i> = 25
$\alpha = 0.95$	(20; 116)	(22; 82)	(23; 64)	(24; 49)
lpha= 0.99	(23; 209)	(24; 132)	(24; 96)	(25; 66)
$\alpha = 0.995$	(24; 266)	(24; 163)	(25; 115)	(25; 76)

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Example (cont.)

c) D Gauss copula resp. t-copula

			k = 2	k = 5	k = 10	k = 25	$\overline{\Delta}$
Tab. A:	Corr = 0.1	$\alpha = 0.95$	(20; 119)	(22; 88)	(22;73)	(23; 71)	58
		$\alpha = 0.99$	(23; 214)	(24; 142)	(24;116)	(24;110)	130
		lpha= 0.995	(24;271)	(24; 174)	(24;135)	(24;131)	174
Tab. B:	Corr = 0.25	$\alpha = 0.95$	(20; 124)	(21; 98)	(22;86)	(22; 78)	58
		$\alpha = 0.99$	(23; 222)	(24; 161)	(24;134)	(24;115)	107
		lpha= 0.995	(24; 283)	(24; 197)	(24;160)	(25;135)	135
Tab. C:	Corr = 0.5	$\alpha = 0.95$	(19; 132)	(20; 116)	(21;109)	(21; 105)	27
		$\alpha = 0.99$	(23; 242)	(24; 200)	(23;183)	(24;172)	70
		$\alpha = 0.995$	(24; 308)	(24; 248)	(24;225)	(25; 210)	98
Tab. D:	$\nu = 50$,	$\alpha = 0.95$	(20; 119)	(22; 89)	(22;74)	(23; 63)	56
	Corr = 0.1	$\alpha = 0.99$	(23; 215)	(24; 146)	(24; 114)	(24;90)	125
		lpha= 0.995	(24; 274)	(24; 179)	(24:137)	(25:105)	169
Tab. E:	$\nu = 50$,	$\alpha = 0.95$	(20; 124)	(21; 99)	(22;88)	(23; 80)	44
	Corr = 0.25	$\alpha = 0.99$	(23; 224)	(24; 164)	(24:139)	(24; 122)	102
		lpha= 0.995	(24; 285)	(24; 202)	(24:168)	(24:144)	143
Tab. F:	u = 10	$\alpha = 0.95$	(20; 125)	(21; 102)	(21;93)	(23; 87)	38
	Corr = 0.25	$\alpha = 0.99$	(23; 230)	(23; 177)	(24;157)	(24;144)	86
		lpha= 0.995	(24; 294)	(24; 223)	(24;196)	(24;177)	117

VaR bounds in subgroup model with Gauss copula in A, B, and C and with *t*-copula in D, E, and F. $\overline{\Delta}$ denotes the difference between upper bounds for k = 2 and k = 25.

(c) Rüschendorf, Uni Freiburg; 75

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Example (cont.)

d) D Clayton resp. Gumble copula

			k = 2	k = 5	k = 10	k = 25	$\overline{\Delta}$
Tab. A:	artheta=1	$\alpha = 0.95$	(20; 122)	(22; 94)	(22; 81)	(23; 71)	51
		lpha= 0.99	(23;216)	(24;147)	(24; 116)	(24; 92)	124
		lpha= 0.995	(24;274)	(24;179)	(24; 135)	(25; 103)	171
Tab. B:	$\vartheta = 3$	$\alpha = 0.95$	(20;130)	(21; 108)	(21; 98)	(22; 90)	40
		$\alpha = 0.99$	(23; 227)	(24;166)	(24; 138)	(24; 119)	108
		$\alpha = 0.995$	(24;285)	(24;198)	(24; 160)	(25; 132)	153
Tab C:	$\vartheta = 10$	$\alpha = 0.95$	(19; 140)	(20; 128)	(20; 122)	(20; 118)	22
		$\alpha = 0.99$	(23;244)	(23;196)	(23; 176)	(24; 162)	82
		$\alpha = 0.995$	(24; 304)	(24; 232)	(24; 202)	(24; 180)	124
Tab. D:	$\vartheta = 1.5$	$\alpha = 0.95$	(19; 140)	(19; 132)	(20; 129)	(20; 127)	13
		$\alpha = 0.99$	(23; 272)	(23; 258)	(23; 254)	(23; 250)	22
		$\alpha = 0.995$	(23; 353)	(23; 338)	(23; 329)	(23; 327)	26
Tab. E:	$\vartheta = 3$	$\alpha = 0.95$	(18; 151)	(18; 150)	(18; 149)	(18; 148)	3
		$\alpha = 0.99$	(22; 294)	(22; 290)	(22; 290)	(22; 289)	5
		$\alpha = 0.995$	(23; 383)	(23; 379)	(23; 379)	(23; 375)	8

VaR bounds in subgroup model with Clayton copula in A, B, and C and Gumbel copula in D and E.

Outline

VaR bounds with marg. inform.

Reduced bounds,higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

7. Conclusion

- Risk bounds with marginal information can be calculated, typically (too) wide
- Various reductions by including additional information
- Higher dimensional marginals (reduced bounds)
- Variance constraints, higher order moment constraints good reduction, when constraints are small enough
- partial independence structure (combined with variance information)
 - strong reduction of dependence uncertainty
 - leads in examples to realistic bounds

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

Conclusion (cont.)

- reduction by partially specified risk factor models
 - strong reduction of dependence uncertainty
 - applicable in variety of mixture models
- partial dependence information (improved standard bounds)
 - one-sided bounds, improved Hoeffding–Fréchet bounds needs strong enough dependence constraints, *d* small
 - two-sided dependence bounds promising tool also in higher dimension d
 - subgroup structure models flexible tool, good reduction

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

lmproved standard bounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

References

- P. Embrechts, G. Puccetti, L. Rüschendorf: Model uncertainty and VaR aggregation. J. Banking Finance 37(8), 2750–2765, 2013
- P. Embrechts, B. Wang, R. Wang: Aggregation-robustness and model uncertainty of regulatory risk measures. Finance Stoch. 19(4), 763-790, 2015
- G. Puccetti, L. Rüschendorf: Asymptotic equivalence of conservative VaR- and ES-based capital charges. J. Risk 16(3), 3-22, 2014
- G. Puccetti, B. Wang, R. Wang: Complete mixability and asymptotic equivalence of worst-possible VaR and ES estimates. Insurance Math. Econom. 53(3), 821–828, 2013
- R. B. Nelsen, B. Quesada-Molina, J. A. Rodríguez-Lallena, M. Úbeda-Flores: Bounds on bivariate distribution functions with given margins and measures of association. Commun. Stat., Theory Methods 30(6), 1155-1162, 2001
- R. B. Nelsen, B. Quesada-Molina, J. A. Rodríguez-Lallena, M. Úbeda-Flores: Best-possible bounds on sets of bivriate distribution functions. J. Multivariate Anal. 90(2), 348–358, 2004

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

References (cont.)

- C. Bernard, L. Rüschendorf, S. Vanduffel: Value-at-Risk bounds with variance constraints. Journal of Risk and Insurance 2015; doi:10.1111/jori.12108
- G. Puccetti, L. Rüschendorf: Bounds for joint portfolios of dependent risks. *Statistics & Risk Modeling* 29(2), 107–132, 2012
- V. Bignozzi, G. Puccetti, L. Rüschendorf: Reducing model risk via positive dependence assumptions. *Insurance Math. Econ.* 61(1), 17-26, 2015
- C. Bernard, L. Rüschendorf, S. Vanduffel, R. Wang: Risk bounds for factor models. Finance Stoch. 3, 631-659 ,2017
- G. Puccetti, D. Small, L. Rüschendorf, S. Vanduffel: Reduction of Value-at-Risk bounds by independence and variance information. Scandinavian Actuarial Journal 2017 (3), 245-266;
- T. Lux, A. Papapantoleon: Improved Fréchet-Hoeffding bounds for d-copulas and applications in model-free finance. Ann.Appl.Prob. 27 (6),3633-3671, 2017

Dutline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion

References (cont.)

- C. Bernard, L. Rüschendorf, S. Vanduffel, J. Yao: How Robust is the Value-at-Risk of Credit Risk Portfolios? The European Journal of Finance 23(6), 507–534, 2017; doi:10.1080/1351847X.2015.1104370
- G. Puccetti, L. Rüschendorf, D. Manko: VaR bounds for joint portfolios with dependence constraints. Dependence Modeling 4, 368–381, 2016
- T. Lux, L. Rüschendorf: VaR bounds with two sided dependence information. Mathematical Finance 29, 967-100, 2018
- L. Rüschendorf, J. Witting: VaR bounds in models with partial dependence information on subgroups. Dependence Modeling 5, 59-74, 2017

Outline

VaR bounds with marg. inform.

Reduced bounds, higher dim. margin.

Variance and higher order moment con.

l mproved stan dard b ounds

Partially specified risk factor mod.

Subgroup structure models

Conclusion