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Motivating Example

@ What is the Average-Value-at-Risk AVaRg g5(U + V) of standard
uniforms U, V ~ Uni([0,1])?

» Assume U and V are independent and hence coupled with the product
copula M(u, v) = uv for all u,v € [0,1]. Then

AVaR[ (U + V) = 1.789.

» Assume U and V are comonotonic and hence coupled with the copula
M(u, v) = min(u, v) for all u,v € [0,1]. Then

AVaRY (U + V) = 1.95.

» Assume U and V are counter-monotonic and hence coupled with the
copula W(u,v) = max(u+ v —1,0) for all u,v € [0,1]. Then

AVaRY (U + V) = 1.
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Motivating Example

e What is the Average-Value-at-Risk AVaRg g5(U + V') of standard
uniforms U, V ~ Uni([0,1])?

@ We can only derive bounds: 1 < AVaRggs5(U + V) < 1.95

@ How can we incorporate the believe that U and V are independent to
derive tighter bounds?

» We account for model/dependence
unvertainty with respect to the Bp(n)
product copula 1.

» We can consider an appropriate
neighborhood B,(IM) of the
reference dependence structure I1,
rather than all possible
dependence structures.
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Motivating Example
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Motivating Example

Samples from the optimizer C of SUP(Y)ceB, () AVaR, (U + V) for
p = 0.04.
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Motivating Example
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Samples from the optimizer C of SUP(v).cen (n)AVaRa(U + V) for
p = 0.08.
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Motivating Example

Samples from the optimizer C of SUP(v).cen (H)AVaRa(U + V) for
p=0.12.
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Motivating Example
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p = 0.16.
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Samples from the optimizer C of SUP(V)ceB,(n) AVaR, (U + V) for
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Motivating Example
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0. . . ) . 1.0
Samples from the optimizer C of SUP(v)_ccn (H)AVaRa(U + V) for
p = 0.20.
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Outline
© Risk aggregation

© Penalization of superhedging problems
© Examples
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Robust risk aggregation

Computation of the worst case average value at risk of a sum of
dependent random variables:

sup  AVaRP(Xy + -+ Xy)
PoX '~
de(PoX~1,i)<p

(X1+"'+Xd—)\)+]+)\}

= sup inf {EP[
PonINﬁ,- AER «

de(PoX~1,m)<p

:;\2& PO;E?NM {EP[(Xl +-..ZXd - )\)+] +)\}

de(PoX~1,a)<p
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Robust risk aggregation

Computation of the worst case average value at risk of a sum of
dependent random variables:

sup  AVaRP(Xi +--- 4+ Xy)
PoX; ' ~fi;
de(PoX~1,1)<p

= e pe{E [ )

de(PoX~1,a)<p

X e Xy — AT
= inf sup {EP[( 1+ + Xd ) ]—i—)\}
AER PoX}_1~ﬁ,- (67
dc(POX_lal_‘)SP
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Expectations under dependence uncertainty

Our goal is to compute

max /fdu
peN(fiy,....fiq) JRA
de(p,i)<p

where [i is a reference probability measure on RY,

M(f1, ..., fig) denotes the set of all couplings with marginals fi1, ..., [
Here, we consider a transport distance

de(p, fi) := _inf / ¢ (x,y) m(dx, dy)
m€MN(fi,p1) JRE xR

e.g c(x,y) = 2ilxi — il
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Expectations under dependence uncertainty

Theorem
For every f € Up(RY) it holds

max /fdu
wEN(fi1,...,Ad) JRd

de(p,1)<p
d d
= inf A h; dii; f - hi(yi) — A ) f(d.
AZO7L?€Cb(R){p +§/R fi +/Rdys€u]1§d[ (y) ; (vi) = Ac(x y)] i( X)}
for each radius p > 0 and a every reference measure i € M(fi1, ..., fiq).

See also Esfahani and Kuhn (2016), Blanchet and Murthy (2016), Gao
and Kleywegt (2017), Bartl, Drapeau, Tangpi (2017)
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Expectations under dependence uncertainty

Theorem

For every f € Up(R?) it holds

max / fdu
HEN(f1,....fid) JRI
dC(Haﬁ)Sp

d

d
TZO,Iiv?éCb(]R) {p/\ l ;/Rh" dfii + /R SUp [f(Y) - Z hi(yi) — Ac(x,y)} ﬁ(dx)}

d d
yER i=1

d
- inf A hi dfi; a(d
,\20,;7?6@(11&) { p-l—;/R e "’/Rdg(x)ﬂ( X)}

g€Cy(RY)
g(x)>F(y)—3 L, hi(yi)—Ae(x.y)

for each radius p > 0 and a every reference measure i € M(fi1,

-5 fid).
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Penalization of
superhedging problems
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Robust optimization problem

Objective: Solve
sup/fdu
veQ

e Qs a set of probability measures on R

where

e f:RY = R is continuous and bounded
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Robust optimization problem

Objective: Solve
Sgg/fdy_ igz%ct/hduo
where
e Qs a set of probability measures on R
o f:RY — R is continuous and bounded
o H C Cyp(RY)
® 4 is a probability measure on RY
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Penalization

superhedging problem penalized version

(0)= jnf [ hdpo | (Ds)
h>f

/hdu0+/ﬁw(f—h)d6

= inf
heH

where

@ (3, is a differentiable nondecreasing convex function,
parameterized by v € R, (e.g. B, = v max{0, x}?)
@ 6 is a probability measure on RY
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Penalization

superhedging problem penalized version

0)=jot [ o | (01) = i, [ hduo+ [ 5,7 - n)a

Py =sup [ Fa | (o) = sup [ s [ 35 (55 )

If h is an optimizer of (Dg,y), then © given by

is an optimizer of (Pp ).
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Approximation with neural networks

The penalized version

(D1g) = i, [ o+ [ 5,(F ~ myas

can be solved by replacing H by a set of neural network functions H".
This leads to the finite-dimensional problem

= inf
heH

(o) = hier;jm/hd,uowL/,By(f— h)do
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Parametric representations of probability measures

Density

\)E 6

dve _

do

g¢, where g¢ is a NN function and 6 is some reference measure
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Parametric representations of probability measures

Pushforward

6 Tg \)g

77N

vg =00 Tgl, where T¢ is a NN function and 6 is some reference measure
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Pushforward representation: Min-Max formulation

o (P)=sup,cq [ fdv
e O={vePRY): [hdv= [hdpuforall h € H} where H C C(RY)
is a linear space of functions, p € P(RY) fix.

Let 0 € P(RX) be sufficiently rich, e.g. # = U([0,1]KX). For a function T
denote by 67 := 0 o T~ the pushforward of # under T. Then
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Pushforward representation: Min-Max formulation

o (P)=sup,cq [ fdv
e O={vePRY): [hdv= [hdpuforall h € H} where H C C(RY)
is a linear space of functions, p € P(RY) fix.

Let 0 € P(RX) be sufficiently rich, e.g. # = U([0,1]KX). For a function T
denote by 67 := 0 o T~ the pushforward of # under T. Then

(P)= sup |nf/fdy+/hdu/hd,u
VGP(Rd
= f [ f(T)dor— | hdor— | hd
2ot [ #Tyaor = [ o= [ ha
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Pushforward representation: Min-Max formulation

o (P)=sup,cq [ fdv
0 Q={vePRY): [hdv= [hdpuforall he H} where H C C(RY)
is a linear space of functions, p € P(RY) fix.

Let 0 € P(RX) be sufficiently rich, e.g. # = U([0,1]KX). For a function T
denote by 67 := 0 o T~ the pushforward of # under T. Then

(P)= sup |nf/fdy+/hdu/hd,u
VGP(Rd
= f [ f(T)dor— | hdor— | hd
0o | FTyaor = [ o= [ hay

Adapt methods from Generative Adversarial Models:

@ Relaxations or Regularizations of the objective function

@ Using game theoretic considerations, like mixing strategies or
anticipating the other "player’
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Examples
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Expected maximum of two comonotone standard Uniforms

o) = sup Elma(u,v)) = TT000)
(V) ~pen(is,iz),
de(f,n)<p

where fi; = fio = U(][0, 1]) are standard uniformly distributed probability
measures, [ is the comonotone copula and ¢(x,y) = [|x — y||1.
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms

0.8 T T T T T

0.75

0.65

o(f1)

0.55

0.5

——analytic solution
--—-LP-solution with equidistant sample| |
- - NN-solution (@ partially correlated)
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Expected maximum of two comonotone standard Uniforms

0.8

0.6

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Samples from the optimizer y for p = 0.
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer u for p = 0.03.
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer u for p = 0.06.
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer u for p = 0.1.
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer u for p = 0.16.
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer u for p = 0.19.
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Expected maximum of two comonotone standard Uniforms

0.0 0.2 0.4 0.6 0.8 1.0

Samples from the optimizer p for p = 0.23.

=] 5 = E DAy
Michael Kupper Robust risk aggregation



Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms

08

0.6

0.2

ol

Samples from the optimizer p for p = 0.36.

u}
)
l
n
it

DA

Michael Kupper Robust risk aggregation



Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer p for p = 0.52.
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Expected maximum of two comonotone standard Uniforms

. 1.‘0
Samples from the optimizer p for p = 0.55.
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Expected maximum of two comonotone standard Uniforms

Consider two different transport distances:

o(f) == sup E [max(U, V)]
(Z)Nuen(ﬁl7ﬁ2)7dc(ﬁ,ﬂ)§p
and i
o(f) == sup E [max(U, V)]
(Z)Nuen(ﬁl,ﬂﬂ,dg(ﬁ”u,)l/ng
where

c(x,y)=|lx—yll and &(x,y)=|x—yls.
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer y for p = 0.
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer u for p = 0.03.
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer p for p = 0.06.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer p for p = 0.1.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer p for p = 0.13.
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Expected maximum of two comonotone standard Uniforms

. 1.‘0
Samples from the optimizer p for p = 0.16.
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer p for p = 0.19.
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Samples from the optimizer u for p = 0.36.

u}
)
I
il
it
)

Michael Kupper Robust risk aggregation



Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer u for p = 0.52.
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Expected maximum of two comonotone standard Uniforms

0.0 0.2 0.4 0.6 0.8 1.0

Samples from the optimizer u for p = 0.55.
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Average Value at Risk of two independent standard
Uniforms

O, = sup AVaR, (U + V)
() ~neN(fir,fi2),
de(@i,n)<p

= sup inf ¢ 7+
peN(fiv,fiz), TER
de(fi,p)<p

/ max(x; + xo — T, O)M(dx)}
(0,12

11—«

where /i = U([0,1]%), fir = fiz = U([0,1]) and ¢(x,y) = |Ix — y/l1.
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Average Value at Risk of two independent standard
Uniforms

1.75

1.65

1.55

[[Janalytic bounds
—==LP-solution with MC
-~ -NN-solution

1.45 1 1 1 1 1 1 1 1 i
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

p
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Average Value at Risk of two independent standard
Uniforms
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Average Value at Risk of two independent standard
Uniforms

Samples from the optimizer u for p = 0.04.
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Average Value at Risk of two independent standard
Uniforms
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. 0.8 1.0
Samples from the optimizer u for p = 0.08.
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Uniforms

Average Value at Risk of two independent standard

Michael Kupper

Samples from the optimizer u for p = 0.12.
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Average Value at Risk of two independent standard
Uniforms
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Samples from the optimizer p for p = 0.16.
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Average Value at Risk of two independent standard
Uniforms

0. . . } . 1.0
Samples from the optimizer u for p = 0.20.
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DNB case study

CREDIT RISK MARKET RISK OWNERSHIP RISK
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DNB case study

| Description

Type

Parameters/Other details

F1

cdf of credit risk Ly

empirical cdf

given by 2.5 Million samples;
standard deviation 51 = 644.602

F

cdf of market risk Ly

empirical cdf

given by 2.5 Million samples;
standard deviation &5 = 5562.362

F3

cdf of asset risk L3

empirical cdf

given by 2.5 Million samples;
standard deviation &3 = 1112.402

Fa

cdf of operational risk Ly

lognormal cdf

= 6.4741049 and ¢ = 0.7213475;
standard deviation 54 = 694.613

Fs

cdf of business risk Lg

lognormal cdf

1 = 6.445997 and ¢ = 0.574740;
standard deviation &5 = 465.064

Fe

cdf of insurance risk Lg

lognormal cdf

= 6.0534537 and ¢ = 0.2489763;
standard deviation 5 = 111.011

reference copula
linking Ly, ..., Lg

student-t copula

with 6 degrees of freedom
and correlation matrix Xg
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DNB case study

We aim to compute

Qco(a7p) = inf AVaR, L )
4 Lg—NHEn(ﬁly---’ﬁﬁ)a ( 6)
de(f,1)<p
$4C°(a,p) = sup AVaR, (Lg) ,
LE ~op€N(fi1 ... fie),
dc(ﬁaﬂ)fp
where Lg” = ?_1 L; and

6
clxy) =30 B

Oj
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Motivating Example

AVaR, (L¢) AVaRT(LE)  AVaRS(LY) AVaR, (L)
1 JaR
— \
24 166 26 981 30499 36 410

AVaR bounds for the example considered by Aas and Puccetti (2014) for
o = 0.95.
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Motivating Example

36 410 (

D supcec AVaRS (L)

30 499<]

> AVaRE(LE)

26 981 [[1 AVaR!(LY)

24 166

infcee AVaRS (L)
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Motivating Example

36 410 (

30 499

26 981 []

24 166

N\

Michael Kupper Robust risk aggregation

o,

<10
T T T T T T T
® e ——
36F _ - o--
aaf .t ~ = —e—suCPCeCAVaRaC(LgF)
-- B (p,a)
K Lo —-AVaR$ (L)
7 C
pr -0 (p, ) i
K 7 —II
\ -~ B (p,0)
28 r, A S, —B—AV&RE (Lg)
S 11
I N - I
26 N, \\\_ —x—infCECAVaRg(Lg)
& I I I I I I I
0 02 04 06 08 1 1.2 1.4
P

January, 2020

24 /26



Thank you

Michael Kupper Robust risk aggregation January, 2020 25/26



References

Ia Aas, K., and Puccetti G. (2014)
Bounds on total economic capital: the DNB case study
Extremes 17.4 (2014): 693-715.

@ Gao R. and Kleywegt A.J. (2017)
Data-driven robust optimization with known marginal distribution
https://faculty.mccombs.utexas.edu/rui.gao/copula.pdf

@ Bartl, D. and Drapeau, S. and Tangpi, L. (2018)
Computational aspects of robust optimized certainty equivalents and option pricing
Mathematical Finance (2019): 1-23. https://doi.org/10.1111/mafi.12203.

@ Eckstein, S. and Kupper, M. (2019)
Computation of optimal transport and related hedging problems via penalization and
neural networks.
Applied Mathematics and Optimization.

@ Eckstein S., Kupper M. and Pohl M.
Robust risk aggregation with neural networks.
arXiv preprint arXiv:1811.00304, 2018.

Michael Kupper Robust risk aggregation January, 2020 26 /26



	Risk aggregation
	Penalization of superhedging problems
	Examples
	References


