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Motivating Example

What is the Average-Value-at-Risk AVaR0.95(U + V ) of standard
uniforms U,V ∼ Uni([0, 1])?
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Motivating Example

What is the Average-Value-at-Risk AVaR0.95(U + V ) of standard
uniforms U,V ∼ Uni([0, 1])?

I Assume U and V are independent and hence coupled with the product
copula Π(u, v) = uv for all u, v ∈ [0, 1]. Then

AVaRΠ
α(U + V ) = 1.789.

I Assume U and V are comonotonic and hence coupled with the copula
M(u, v) = min(u, v) for all u, v ∈ [0, 1]. Then

AVaRM
α (U + V ) = 1.95.

I Assume U and V are counter-monotonic and hence coupled with the
copula W (u, v) = max(u + v − 1, 0) for all u, v ∈ [0, 1]. Then

AVaRW
α (U + V ) = 1.
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Motivating Example

What is the Average-Value-at-Risk AVaR0.95(U + V ) of standard
uniforms U,V ∼ Uni([0, 1])?

We can only derive bounds: 1 ≤ AVaR0.95(U + V ) ≤ 1.95

How can we incorporate the believe that U and V are independent to
derive tighter bounds?

I We account for model/dependence
unvertainty with respect to the
product copula Π.

I We can consider an appropriate
neighborhood Bρ(Π) of the
reference dependence structure Π,
rather than all possible
dependence structures.

Π
ρ

Bρ(Π) Bρ(Π)
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Motivating Example

Samples from the optimizer C of sup(VU)∼C∈Bρ(Π)
AVaRα(U +V ) for ρ = 0.
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Motivating Example

Samples from the optimizer C of sup(VU)∼C∈Bρ(Π)
AVaRα(U + V ) for

ρ = 0.04.
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Motivating Example

Samples from the optimizer C of sup(VU)∼C∈Bρ(Π)
AVaRα(U + V ) for

ρ = 0.08.
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Motivating Example

Samples from the optimizer C of sup(VU)∼C∈Bρ(Π)
AVaRα(U + V ) for

ρ = 0.12.
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Motivating Example

Samples from the optimizer C of sup(VU)∼C∈Bρ(Π)
AVaRα(U + V ) for

ρ = 0.16.
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Motivating Example

Samples from the optimizer C of sup(VU)∼C∈Bρ(Π)
AVaRα(U + V ) for

ρ = 0.20.
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Outline

1 Risk aggregation

2 Penalization of superhedging problems

3 Examples
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Robust risk aggregation

Computation of the worst case average value at risk of a sum of
dependent random variables:

sup
P◦X−1

i ∼µ̄i
dc (P◦X−1,µ̄)≤ρ

AVaRP
α (X1 + · · ·+ Xd)

= sup
P◦X−1

i ∼µ̄i
dc (P◦X−1,µ̄)≤ρ

inf
λ∈R

{
EP
[(X1 + · · ·+ Xd − λ)+

α

]
+ λ
}

= inf
λ∈R

sup
P◦X−1

i ∼µ̄i
dc (P◦X−1,µ̄)≤ρ

{
EP
[(X1 + · · ·+ Xd − λ)+

α

]
+ λ
}
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Expectations under dependence uncertainty

Our goal is to compute

max
µ∈Π(µ̄1,...,µ̄d )
dc (µ,µ̄)≤ρ

∫
Rd

f dµ

where µ̄ is a reference probability measure on Rd ,
Π(µ̄1, . . . , µ̄d) denotes the set of all couplings with marginals µ̄1, . . . , µ̄d .
Here, we consider a transport distance

dc(µ, µ̄) := inf
π∈Π(µ̄,µ)

∫
Rd×Rd

c (x , y)π(dx , dy)

e.g. c(x , y) =
∑

i |xi − yi |.
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Expectations under dependence uncertainty

Theorem

For every f ∈ Ub(Rd) it holds

max
µ∈Π(µ̄1,...,µ̄d )

dc (µ,µ̄)≤ρ

∫
Rd

f dµ

= inf
λ≥0, hi∈Cb(R)

{
ρλ+

d∑
i=1

∫
R
hi d µ̄i +

∫
Rd

sup
y∈Rd

[
f (y)−

d∑
i=1

hi (yi )− λc(x , y)
]
µ̄(dx)

}
for each radius ρ ≥ 0 and a every reference measure µ̄ ∈ Π(µ̄1, . . . , µ̄d).

See also Esfahani and Kuhn (2016), Blanchet and Murthy (2016), Gao
and Kleywegt (2017), Bartl, Drapeau, Tangpi (2017)
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Expectations under dependence uncertainty

Theorem

For every f ∈ Ub(Rd) it holds

max
µ∈Π(µ̄1,...,µ̄d )

dc (µ,µ̄)≤ρ

∫
Rd

f dµ

= inf
λ≥0, hi∈Cb(R)

{
ρλ+

d∑
i=1

∫
R
hi d µ̄i +

∫
Rd

sup
y∈Rd

[
f (y)−

d∑
i=1

hi (yi )− λc(x , y)
]
µ̄(dx)

}
= inf

λ≥0, hi∈Cb(R)

g∈Cb(Rd )

g(x)≥f (y)−
∑d

i=1 hi (yi )−λc(x,y)

{
λρ+

d∑
i=1

∫
R
hi d µ̄i +

∫
Rd

g(x) µ̄(dx)
}

for each radius ρ ≥ 0 and a every reference measure µ̄ ∈ Π(µ̄1, . . . , µ̄d).
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Penalization of
superhedging problems
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Robust optimization problem

Objective: Solve

sup
ν∈Q

∫
f dν

where

Q is a set of probability measures on Rd

f : Rd → R is continuous and bounded
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Robust optimization problem

Objective: Solve

sup
ν∈Q

∫
f dν = inf

h∈H
h≥f

∫
h dµ0

where

Q is a set of probability measures on Rd

f : Rd → R is continuous and bounded

H ⊆ Cb(Rd)

µ0 is a probability measure on Rd
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Penalization

superhedging problem penalized version

(D) = inf
h∈H
h≥f

∫
h dµ0 (Dθ,γ) = inf

h∈H

∫
h dµ0 +

∫
βγ(f − h)dθ

where

βγ is a differentiable nondecreasing convex function,
parameterized by γ ∈ R+ (e.g. βγ = γmax{0, x}2)

θ is a probability measure on Rd
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Penalization

superhedging problem penalized version

(D) = inf
h∈H
h≥f

∫
h dµ0 (Dθ,γ) = inf

h∈H

∫
h dµ0 +

∫
βγ(f − h)dθ

(P) = sup
ν∈Q

∫
f dν (Pθ,γ) = sup

ν∈Q

∫
fdν −

∫
β∗γ

(
dν

dθ

)
dθ

If ĥ is an optimizer of (Dθ,γ), then ν̂ given by

d ν̂

dθ
= β′γ(f − ĥ)

is an optimizer of (Pθ,γ).
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Approximation with neural networks

The penalized version

(Dθ,γ) = inf
h∈H

∫
h dµ0 +

∫
βγ(f − h)dθ

can be solved by replacing H by a set of neural network functions Hm.
This leads to the finite-dimensional problem

(Dm
θ,γ) = inf

h∈Hm

∫
h dµ0 +

∫
βγ(f − h)dθ
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Parametric representations of probability measures

Density

dνξ
dθ = gξ, where gξ is a NN function and θ is some reference measure
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Parametric representations of probability measures

Pushforward

νξ = θ ◦ T−1
ξ , where Tξ is a NN function and θ is some reference measure
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Pushforward representation: Min-Max formulation

(P) = supν∈Q
∫
f dν

Q = {ν ∈ P(Rd) :
∫
h dν =

∫
h dµ for all h ∈ H} where H ⊆ C (Rd)

is a linear space of functions, µ ∈ P(Rd) fix.

Let θ ∈ P(RK ) be sufficiently rich, e.g. θ = U([0, 1]K ). For a function T
denote by θT := θ ◦ T−1 the pushforward of θ under T . Then

(P) = sup
ν∈P(Rd )

inf
h∈H

∫
f dν +

∫
h dν −

∫
h dµ

= sup
T :RK→Rd

inf
h∈H

∫
f (T ) dθT −

∫
h dθT −

∫
h dµ

Adapt methods from Generative Adversarial Models:

Relaxations or Regularizations of the objective function

Using game theoretic considerations, like mixing strategies or
anticipating the other ’player’
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Examples
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Expected maximum of two comonotone standard Uniforms

φ(f1) := sup
(VU)∼µ∈Π(µ̄1,µ̄2),

dc (µ̄,µ)≤ρ

E [max(U,V )] =
1 + min(ρ, 0.5)

2

where µ̄1 = µ̄2 = U([0, 1]) are standard uniformly distributed probability
measures, µ̄ is the comonotone copula and c(x , y) = ||x − y ||1.
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Expected maximum of two comonotone standard Uniforms

ρ
0 0.1 0.2 0.3 0.4 0.5 0.6

φ
(f

1
)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

analytic solution
LP-solution with MC (n = 250)
NN-solution (θ product)
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Expected maximum of two comonotone standard Uniforms

ρ
0 0.1 0.2 0.3 0.4 0.5 0.6

φ
(f

1
)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

analytic solution
LP-solution with equidistant sample
NN-solution (θ partially correlated)
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.03.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.06.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.1.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.13.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.16.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.19.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.23.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.26.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.29.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.32.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.36.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.39.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.4.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.42.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.45.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.48.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.50.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.52.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.55.
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Expected maximum of two comonotone standard Uniforms

Consider two different transport distances:

φ(f1) := sup
(VU)∼µ∈Π(µ̄1,µ̄2), dc (µ̄,µ)≤ρ

E [max(U,V )]

and
φ̃(f1) := sup

(VU)∼µ∈Π(µ̄1,µ̄2), dc̃ (µ̄,µ)1/2≤ρ
E [max(U,V )]

where
c(x , y) = ||x − y ||1 and c̃(x , y) = ||x − y ||22.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.03.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.06.
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.1.
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms
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Samples from the optimizer µ for ρ = 0.23.

Michael Kupper Robust risk aggregation January, 2020 18 / 26



Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.26.

Michael Kupper Robust risk aggregation January, 2020 18 / 26
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Expected maximum of two comonotone standard Uniforms
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Expected maximum of two comonotone standard Uniforms

Samples from the optimizer µ for ρ = 0.55.
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Average Value at Risk of two independent standard
Uniforms

Φ2 := sup
(VU)∼µ∈Π(µ̄1,µ̄2),

dc (µ̄,µ)≤ρ

AVaRα(U + V )

= sup
µ∈Π(µ̄1,µ̄2),
dc (µ̄,µ)≤ρ

inf
τ∈R

{
τ +

1

1− α

∫
[0,1]2

max(x1 + x2 − τ, 0)µ(dx)

}

where µ̄ = U([0, 1]2), µ̄1 = µ̄2 = U([0, 1]) and c(x , y) = ||x − y ||1.
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Average Value at Risk of two independent standard
Uniforms

ρ
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Φ
2

1.45

1.5

1.55

1.6

1.65

1.7

1.75

analytic bounds
LP-solution with MC
NN-solution
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Average Value at Risk of two independent standard
Uniforms

Samples from the optimizer µ for ρ = 0.
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Average Value at Risk of two independent standard
Uniforms

Samples from the optimizer µ for ρ = 0.04.
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Average Value at Risk of two independent standard
Uniforms

Samples from the optimizer µ for ρ = 0.08.
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Average Value at Risk of two independent standard
Uniforms

Samples from the optimizer µ for ρ = 0.12.
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Average Value at Risk of two independent standard
Uniforms

Samples from the optimizer µ for ρ = 0.16.
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Average Value at Risk of two independent standard
Uniforms

Samples from the optimizer µ for ρ = 0.20.
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DNB case study

CREDIT RISK

0 50000 150000

0
10

00
00

0
MARKET RISK

0 4000 80000e
+

00
3e

+
05

OWNERSHIP RISK

0 10000 25000

0
10

00
00

0

0 1000 30000e
+

00
6e

−
04

OPERATIONAL RISK

0 1000 30000.
00

00
0.
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08

BUSINESS RISK

0 1000 3000

0.
00

0
0.

00
2

0.
00

4

INSURANCE RISK
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DNB case study

Description Type Parameters/Other details

F1 cdf of credit risk L1 empirical cdf
given by 2.5 Million samples;

standard deviation σ̄1 = 644.602

F2 cdf of market risk L2 empirical cdf
given by 2.5 Million samples;

standard deviation σ̄2 = 5562.362

F3 cdf of asset risk L3 empirical cdf
given by 2.5 Million samples;

standard deviation σ̄3 = 1112.402

F4 cdf of operational risk L4 lognormal cdf
µ = 6.4741049 and ς = 0.7213475;

standard deviation σ̄4 = 694.613

F5 cdf of business risk L5 lognormal cdf
µ = 6.445997 and ς = 0.574740;
standard deviation σ̄5 = 465.064

F6 cdf of insurance risk L6 lognormal cdf
µ = 6.0534537 and ς = 0.2489763;

standard deviation σ̄6 = 111.011

C0
reference copula

student-t copula
with 6 degrees of freedom

linking L1, . . . , L6 and correlation matrix Σ0

Michael Kupper Robust risk aggregation January, 2020 22 / 26



DNB case study

We aim to compute

ΦC0
4 (α, ρ) := inf

L+
6 ∼µ∈Π(µ̄1,...,µ̄6),

dc (µ̄,µ)≤ρ

AVaRα
(
L+

6

)
,

Φ
C0

4 (α, ρ) := sup
L+

6 ∼µ∈Π(µ̄1,...,µ̄6),
dc (µ̄,µ)≤ρ

AVaRα
(
L+

6

)
,

where L+
6 :=

∑6
i=1 Li and

c(x , y) =
6∑

i=1

|xi − yi |
σ̄i

.
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Motivating Example

24 166 26 981 30 499 36 410

AVaRα(L+
6 ) AVaRC0

α (L+
6 ) AVaRα(L+

6 )AVaRΠ
α(L+

6 )

AVaR bounds for the example considered by Aas and Puccetti (2014) for
α = 0.95.
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Motivating Example

24 166

26 981

30 499

36 410

infC∈C AVaRC
α(L+

6 )

AVaRΠ
α(L+

6 )

AVaRC0
α (L+

6 )

supC∈C AVaRC
α(L+

6 )
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Motivating Example

24 166

26 981

30 499

36 410

ρ
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Thank you
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