Robust risk aggregation with neural networks

MICHAEL KUPPER

joint work with STEPHAN ECKSTEIN and MATHIAS POHL

Model Uncertainty in Risk Management Paris, January 2020

<ロト <四ト <注入 <注下 <注下 <

What is the Average-Value-at-Risk AVaR_{0.95}(U + V) of standard uniforms U, V ~ Uni([0, 1])?

(日) (四) (日) (日) (日)

- What is the Average-Value-at-Risk AVaR_{0.95}(U + V) of standard uniforms U, V ~ Uni([0, 1])?
 - Assume U and V are independent and hence coupled with the product copula Π(u, v) = uv for all u, v ∈ [0, 1]. Then

$$\mathsf{AVaR}^{\Pi}_{\alpha}(U+V) = 1.789.$$

Assume U and V are comonotonic and hence coupled with the copula M(u, v) = min(u, v) for all u, v ∈ [0, 1]. Then

$$\mathsf{AVaR}^M_\alpha(U+V) = 1.95.$$

Assume U and V are counter-monotonic and hence coupled with the copula W(u, v) = max(u + v − 1, 0) for all u, v ∈ [0, 1]. Then

$$\mathsf{AVaR}^W_\alpha(U+V)=1.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- What is the Average-Value-at-Risk AVaR_{0.95}(U + V) of standard uniforms U, V ~ Uni([0, 1])?
- We can only derive bounds: $1 \le AVaR_{0.95}(U + V) \le 1.95$

(日) (四) (日) (日) (日)

- What is the Average-Value-at-Risk AVaR_{0.95}(U + V) of standard uniforms U, V ~ Uni([0, 1])?
- We can only derive bounds: $1 \leq AVaR_{0.95}(U+V) \leq 1.95$
- How can we incorporate the believe that *U* and *V* are independent to derive tighter bounds?

- What is the Average-Value-at-Risk AVaR_{0.95}(U + V) of standard uniforms U, V ~ Uni([0, 1])?
- We can only derive bounds: $1 \leq AVaR_{0.95}(U+V) \leq 1.95$
- How can we incorporate the believe that U and V are independent to derive tighter bounds?
 - We account for model/dependence unvertainty with respect to the product copula Π.
 - We can consider an appropriate neighborhood B_ρ(Π) of the reference dependence structure Π, rather than all possible dependence structures.

• • = • • =

Samples from the optimizer C of $\sup_{U \to C \in \mathcal{B}_{\rho}(\Pi)} AVaR_{\alpha}(U+V)$ for $\rho = 0$.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Samples from the optimizer *C* of $\sup_{\substack{V \\ U} \sim C \in \mathcal{B}_{\rho}(\Pi)} AVaR_{\alpha}(U+V)$ for $\rho = 0.04$.

(I) < (II) <

Samples from the optimizer C of $\sup_{\substack{V\\U} \sim C \in \mathcal{B}_{\rho}(\Pi)} AVaR_{\alpha}(U+V)$ for $\rho = 0.08$.

• • • • • • • • • • • • •

< 行

Outline

2 Penalization of superhedging problems

Image: A match a ma

Robust risk aggregation

Computation of the worst case average value at risk of a sum of dependent random variables:

 $\sup_{\substack{P \circ X_i^{-1} \sim \bar{\mu}_i \\ d_c(P \circ X^{-1}, \bar{\mu}) \leq \rho}} AVaR^P_\alpha(X_1 + \dots + X_d)$

$$= \sup_{\substack{P \circ X_i^{-1} \sim \bar{\mu}_i \\ d_c(P \circ X^{-1}, \bar{\mu}) \leq \rho}} \inf_{\lambda \in \mathbb{R}} \left\{ E^P \left[\frac{(X_1 + \dots + X_d - \lambda)^+}{\alpha} \right] + \lambda \right\}$$

$$= \inf_{\lambda \in \mathbb{R}} \sup_{\substack{P \circ X_i^{-1} \sim \bar{\mu}_i \\ d_c(P \circ X^{-1}, \bar{\mu}) \leq \rho}} \left\{ E^P \Big[\frac{(X_1 + \dots + X_d - \lambda)^+}{\alpha} \Big] + \lambda \right\}$$

(日) (四) (日) (日) (日)

Robust risk aggregation

Computation of the worst case average value at risk of a sum of dependent random variables:

 $\sup_{\substack{P \circ X_i^{-1} \sim \bar{\mu}_i \\ d_c(P \circ X^{-1}, \bar{\mu}) \leq \rho}} AVaR^P_\alpha(X_1 + \dots + X_d)$

$$= \sup_{\substack{P \circ X_i^{-1} \sim \bar{\mu}_i \\ d_c(P \circ X^{-1}, \bar{\mu}) \leq \rho}} \inf_{\lambda \in \mathbb{R}} \left\{ E^P \left[\frac{(X_1 + \dots + X_d - \lambda)^+}{\alpha} \right] + \lambda \right\}$$

$$= \inf_{\lambda \in \mathbb{R}} \sup_{\substack{P \circ X_i^{-1} \sim \bar{\mu}_i \\ d_c(P \circ X^{-1}, \bar{\mu}) \leq \rho}} \left\{ E^P \left[\frac{(X_1 + \dots + X_d - \lambda)^+}{\alpha} \right] + \lambda \right\}$$

(日) (四) (日) (日) (日)

Expectations under dependence uncertainty

Our goal is to compute

$$\max_{\substack{\mu \in \Pi(\bar{\mu}_1, \dots, \bar{\mu}_d) \\ d_c(\mu, \bar{\mu}) \le \rho}} \int_{\mathbb{R}^d} f \, d\mu$$

where $\bar{\mu}$ is a reference probability measure on \mathbb{R}^d , $\Pi(\bar{\mu}_1, \ldots, \bar{\mu}_d)$ denotes the set of all couplings with marginals $\bar{\mu}_1, \ldots, \bar{\mu}_d$. Here, we consider a transport distance

$$d_{c}(\mu,\bar{\mu}) := \inf_{\pi \in \Pi(\bar{\mu},\mu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} c(x,y) \, \pi(dx,dy)$$

e.g. $c(x, y) = \sum_{i} |x_i - y_i|$.

Expectations under dependence uncertainty

Theorem For every $f \in U_b(\mathbb{R}^d)$ it holds $\max_{\substack{\mu \in \Pi(\bar{\mu}_1, \dots, \bar{\mu}_d) \\ d_c(\mu, \bar{\mu}) \leq \rho}} \int_{\mathbb{R}^d} f \, d\mu$ $= \inf_{\lambda \geq 0, \ h_i \in C_b(\mathbb{R})} \left\{ \rho \lambda + \sum_{i=1}^d \int_{\mathbb{R}} h_i \, d\bar{\mu}_i + \int_{\mathbb{R}^d} \sup_{y \in \mathbb{R}^d} \left[f(y) - \sum_{i=1}^d h_i(y_i) - \lambda c(x, y) \right] \bar{\mu}(dx) \right\}$ for each radius $\rho \geq 0$ and a every reference measure $\bar{\mu} \in \Pi(\bar{\mu}_1, \dots, \bar{\mu}_d)$.

See also Esfahani and Kuhn (2016), Blanchet and Murthy (2016), Gao and Kleywegt (2017), Bartl, Drapeau, Tangpi (2017)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Expectations under dependence uncertainty

Theorem For every $f \in U_b(\mathbb{R}^d)$ it holds $\max_{\mu\in\Pi(\bar{\mu}_1,\ldots,\bar{\mu}_d)}\int_{\mathbb{R}^d}f\,d\mu$ $d_c(\mu,\bar{\mu}) < \rho$ $= \inf_{\lambda \ge 0, h_i \in C_b(\mathbb{R})} \left\{ \rho \lambda + \sum_{i=1}^a \int_{\mathbb{R}} h_i \, d\bar{\mu}_i + \int_{\mathbb{R}^d} \sup_{y \in \mathbb{R}^d} \left[f(y) - \sum_{i=1}^a h_i(y_i) - \lambda c(x, y) \right] \bar{\mu}(dx) \right\}$ $\left\{\lambda\rho+\sum_{i=1}^{d}\int_{\mathbb{R}}h_{i}\,d\bar{\mu}_{i}+\int_{\mathbb{R}^{d}}g(x)\,\bar{\mu}(dx)\right\}$ $\inf_{\lambda \ge 0, h_i \in C_b(\mathbb{R})}$ $g \in C_b(\mathbb{R}^d)$ $g(x) \ge f(y) - \sum_{i=1}^{d} h_i(y_i) - \lambda c(x,y)$

for each radius $\rho \geq 0$ and a every reference measure $\bar{\mu} \in \Pi(\bar{\mu}_1, \dots, \bar{\mu}_d)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Penalization of superhedging problems

Michael Kupper

Robust risk aggregation

January, 2020 8 / 26

• • • • • • • • • • • •

Robust optimization problem

Objective: Solve

$$\sup_{\nu\in\mathcal{Q}}\int f\,d\nu$$

where

- $\mathcal Q$ is a set of probability measures on $\mathbb R^d$
- $f: \mathbb{R}^d \to \mathbb{R}$ is continuous and bounded

Robust optimization problem

Objective: Solve

$$\sup_{\nu \in \mathcal{Q}} \int f \, d\nu = \inf_{\substack{h \in \mathcal{H} \\ h \ge f}} \int h \, d\mu_0$$

where

- $\mathcal Q$ is a set of probability measures on $\mathbb R^d$
- $f: \mathbb{R}^d \to \mathbb{R}$ is continuous and bounded
- $\mathcal{H} \subseteq C_b(\mathbb{R}^d)$
- μ_0 is a probability measure on \mathbb{R}^d

Penalization

superhedging problempenalized version
$$(D) = \inf_{\substack{h \in \mathcal{H} \\ h \ge f}} \int h \, d\mu_0$$
 $(D_{\theta,\gamma}) = \inf_{h \in \mathcal{H}} \int h \, d\mu_0 + \int \beta_{\gamma}(f-h) \, d\theta$

where

- β_{γ} is a differentiable nondecreasing convex function, parameterized by $\gamma \in \mathbb{R}_+$ (e.g. $\beta_{\gamma} = \gamma \max\{0, x\}^2$)
- θ is a probability measure on \mathbb{R}^d

< □ > < □ > < □ > < □ >

Penalization

If \hat{h} is an optimizer of $(D_{\theta,\gamma})$, then $\hat{\nu}$ given by

$$rac{d\hat{
u}}{d heta}=eta_{\gamma}^{\prime}(f-\hat{h})$$

is an optimizer of $(P_{\theta,\gamma})$.

< □ > < 同 > < 回 > < 回 > < 回 >

Approximation with neural networks

The penalized version

$$(D_{ heta,\gamma}) = \inf_{h\in\mathcal{H}}\int h\,d\mu_0 + \int eta_\gamma(f-h)d heta$$

can be solved by replacing \mathcal{H} by a set of neural network functions \mathcal{H}^m . This leads to the finite-dimensional problem

$$(D^m_{ heta,\gamma}) = \inf_{h\in\mathcal{H}^m}\int h\,d\mu_0 + \int eta_\gamma(f-h)d heta$$

Parametric representations of probability measures

 $\frac{d\nu_{\xi}}{d\theta} = g_{\xi}$, where g_{ξ} is a NN function and θ is some reference measure

→ < ∃ →</p>

Parametric representations of probability measures

Pushforward

 $\nu_{\xi} = \theta \circ T_{\xi}^{-1}$, where T_{ξ} is a NN function and θ is some reference measure

Pushforward representation: Min-Max formulation

• $(P) = \sup_{\nu \in \mathcal{Q}} \int f \, d\nu$

• $Q = \{ \nu \in \mathcal{P}(\mathbb{R}^d) : \int h \, d\nu = \int h \, d\mu$ for all $h \in \mathcal{H} \}$ where $\mathcal{H} \subseteq C(\mathbb{R}^d)$ is a linear space of functions, $\mu \in \mathcal{P}(\mathbb{R}^d)$ fix.

Let $\theta \in \mathcal{P}(\mathbb{R}^{K})$ be sufficiently rich, e.g. $\theta = \mathcal{U}([0,1]^{K})$. For a function T denote by $\theta_{T} := \theta \circ T^{-1}$ the pushforward of θ under T. Then

Pushforward representation: Min-Max formulation

• $(P) = \sup_{\nu \in \mathcal{Q}} \int f \, d\nu$

• $Q = \{ \nu \in \mathcal{P}(\mathbb{R}^d) : \int h \, d\nu = \int h \, d\mu$ for all $h \in \mathcal{H} \}$ where $\mathcal{H} \subseteq C(\mathbb{R}^d)$ is a linear space of functions, $\mu \in \mathcal{P}(\mathbb{R}^d)$ fix.

Let $\theta \in \mathcal{P}(\mathbb{R}^{K})$ be sufficiently rich, e.g. $\theta = \mathcal{U}([0,1]^{K})$. For a function T denote by $\theta_{T} := \theta \circ T^{-1}$ the pushforward of θ under T. Then

$$(P) = \sup_{\nu \in \mathcal{P}(\mathbb{R}^d)} \inf_{h \in \mathcal{H}} \int f \, d\nu + \int h \, d\nu - \int h \, d\mu$$
$$= \sup_{T: \mathbb{R}^K \to \mathbb{R}^d} \inf_{h \in \mathcal{H}} \int f(T) \, d\theta_T - \int h \, d\theta_T - \int h \, d\mu$$

Pushforward representation: Min-Max formulation

• $(P) = \sup_{\nu \in \mathcal{Q}} \int f \, d\nu$

• $Q = \{ \nu \in \mathcal{P}(\mathbb{R}^d) : \int h \, d\nu = \int h \, d\mu$ for all $h \in \mathcal{H} \}$ where $\mathcal{H} \subseteq C(\mathbb{R}^d)$ is a linear space of functions, $\mu \in \mathcal{P}(\mathbb{R}^d)$ fix.

Let $\theta \in \mathcal{P}(\mathbb{R}^{K})$ be sufficiently rich, e.g. $\theta = \mathcal{U}([0,1]^{K})$. For a function T denote by $\theta_{T} := \theta \circ T^{-1}$ the pushforward of θ under T. Then

$$(P) = \sup_{\nu \in \mathcal{P}(\mathbb{R}^d)} \inf_{h \in \mathcal{H}} \int f \, d\nu + \int h \, d\nu - \int h \, d\mu$$
$$= \sup_{T: \mathbb{R}^K \to \mathbb{R}^d} \inf_{h \in \mathcal{H}} \int f(T) \, d\theta_T - \int h \, d\theta_T - \int h \, d\mu$$

Adapt methods from Generative Adversarial Models:

- Relaxations or Regularizations of the objective function
- Using game theoretic considerations, like mixing strategies or anticipating the other 'player'

Examples

< □ > < □ > < □ > < □ > < □ >

$$\phi(f_1) := \sup_{\substack{\binom{V}{U} \sim \mu \in \Pi(\bar{\mu}_1, \bar{\mu}_2), \\ d_c(\bar{\mu}, \mu) \le \rho}} \mathbb{E}\left[\max(U, V)\right] = \frac{1 + \min(\rho, 0.5)}{2}$$

where $\bar{\mu}_1 = \bar{\mu}_2 = \mathcal{U}([0, 1])$ are standard uniformly distributed probability measures, $\bar{\mu}$ is the comonotone copula and $c(x, y) = ||x - y||_1$.

Michael Kupper

Michael Kupper

Samples from the optimizer μ for $\rho = 0.48$.

Samples from the optimizer μ for $\rho = 0.50$.

Samples from the optimizer μ for $\rho = 0.52$.

Samples from the optimizer μ for $\rho = 0.55$.

Consider two different transport distances:

$$\phi(f_1) := \sup_{\binom{V}{U} \sim \mu \in \Pi(\bar{\mu}_1, \bar{\mu}_2), \, d_c(\bar{\mu}, \mu) \le \rho} \mathbb{E}\left[\max(U, V)\right]$$

and

$$ilde{\phi}(f_1) := \sup_{inom{V}{U} \sim \mu \in \Pi(ar{\mu}_1,ar{\mu}_2), \, d_{ ilde{c}}(ar{\mu},\mu)^{1/2} \leq
ho} \mathbb{E}\left[\max(U,V)
ight]$$

where

$$c(x,y) = ||x - y||_1$$
 and $\tilde{c}(x,y) = ||x - y||_2^2$.

Image: A match a ma

Samples from the optimizer μ for $\rho = 0.06$.

Samples from the optimizer μ for $\rho = 0.13$.

Samples from the optimizer μ for $\rho = 0.16$.

Samples from the optimizer μ for $\rho = 0.19$.

Samples from the optimizer μ for $\rho = 0.23$.

Samples from the optimizer μ for $\rho = 0.26$.

Samples from the optimizer μ for $\rho = 0.29$.

Samples from the optimizer μ for $\rho = 0.32$.

Samples from the optimizer μ for $\rho = 0.36$.

Samples from the optimizer μ for $\rho = 0.39$.

Samples from the optimizer μ for $\rho = 0.42$.

Samples from the optimizer μ for $\rho = 0.45$.

Samples from the optimizer μ for $\rho = 0.48$.

Samples from the optimizer μ for $\rho = 0.52$.

Samples from the optimizer μ for $\rho = 0.55$.
$$\begin{split} \Phi_{2} &:= \sup_{\substack{\binom{V}{U} \sim \mu \in \Pi(\bar{\mu}_{1}, \bar{\mu}_{2}), \\ d_{c}(\bar{\mu}, \mu) \leq \rho}} \operatorname{AVaR}_{\alpha}(U+V) \\ &= \sup_{\substack{\mu \in \Pi(\bar{\mu}_{1}, \bar{\mu}_{2}), \ \tau \in \mathbb{R} \\ d_{c}(\bar{\mu}, \mu) \leq \rho}} \inf_{\substack{\ell \in \Pi(\bar{\mu}_{1}, \bar{\mu}_{2}), \ \tau \in \mathbb{R}}} \left\{ \tau + \frac{1}{1-\alpha} \int_{[0,1]^{2}} \max(x_{1} + x_{2} - \tau, 0) \mu(dx) \right\} \end{split}$$

where $\bar{\mu} = \mathcal{U}([0,1]^2)$, $\bar{\mu}_1 = \bar{\mu}_2 = \mathcal{U}([0,1])$ and $c(x,y) = ||x-y||_1$.

Image: A matrix and A matrix

Michael Kupper

January, 2020 19 / 26

Samples from the optimizer μ for $\rho = 0$.

Mic	hael	K	upper
			apper

Samples from the optimizer μ for $\rho = 0.04$.

Mic	hael	K	upper
			apper

Samples from the optimizer μ for $\rho = 0.08$.

Mic	hael	K	upper
			apper

Samples from the optimizer μ for $\rho = 0.12$.

1 1 1	cha	K 11	nn	or
	ulla	IN U	$\nu \nu$	EI.

Samples from the optimizer μ for $\rho = 0.16$.

		1 1 2		
1 1 1	char	<u> </u>	unn	or.
	Cillar		սսս	

Samples from the optimizer μ for $\rho = 0.20$.

DNB case study

→ ∃ →

э

DNB case study

	Description	Туре	Parameters/Other details
F_1	cdf of credit risk L_1	empirical cdf	given by 2.5 Million samples; standard deviation $ar{\sigma}_1=$ 644.602
F_2	cdf of market risk L_2	empirical cdf	given by 2.5 Million samples; standard deviation $\bar{\sigma}_2 = 5562.362$
F ₃	cdf of asset risk L ₃	empirical cdf	given by 2.5 Million samples; standard deviation $\bar{\sigma}_3 = 1112.402$
F ₄	cdf of operational risk L_4	lognormal cdf	$\mu = 6.4741049 \text{ and } \varsigma = 0.7213475;$ standard deviation $\bar{\sigma}_4 = 694.613$
F ₅	cdf of business risk L_5	lognormal cdf	$\mu = 6.445997$ and $\varsigma = 0.574740;$ standard deviation $\bar{\sigma}_5 = 465.064$
F ₆	cdf of insurance risk L_6	lognormal cdf	$\mu = 6.0534537$ and $\varsigma = 0.2489763$; standard deviation $\bar{\sigma}_6 = 111.011$
<i>C</i> ₀	reference copula linking L_1, \ldots, L_6	student-t copula	with 6 degrees of freedom and correlation matrix $\boldsymbol{\Sigma}_0$

イロト イヨト イヨト イヨト

DNB case study

We aim to compute

$$\begin{split} \underline{\Phi}_{4}^{C_{0}}(\alpha,\rho) &:= \inf_{\substack{L_{6}^{+} \sim \mu \in \Pi(\bar{\mu}_{1},...,\bar{\mu}_{6}), \\ d_{c}(\bar{\mu},\mu) \leq \rho}} \operatorname{AVaR}_{\alpha}\left(L_{6}^{+}\right), \\ \overline{\Phi}_{4}^{C_{0}}(\alpha,\rho) &:= \sup_{\substack{L_{6}^{+} \sim \mu \in \Pi(\bar{\mu}_{1},...,\bar{\mu}_{6}), \\ d_{c}(\bar{\mu},\mu) \leq \rho}} \operatorname{AVaR}_{\alpha}\left(L_{6}^{+}\right), \end{split}$$

where $L_{6}^{+} := \sum_{i=1}^{6} L_{i}$ and

$$c(x,y) = \sum_{i=1}^{6} \frac{|x_i - y_i|}{\bar{\sigma}_i}.$$

-

• • • • • • • • • •

Motivating Example

AVaR bounds for the example considered by Aas and Puccetti (2014) for $\alpha = 0.95$.

< A > < E

Motivating Example

Motivating Example

Thank you

Michael Kupper

Robust risk aggregation

January, 2020 25 / 26

э

A D N A B N A B N A B N

References

Aas, K., and Puccetti G. (2014) Bounds on total economic capital: the DNB case study Extremes 17.4 (2014): 693-715.

Gao R. and Kleywegt A.J. (2017) Data-driven robust optimization with known marginal distribution

https://faculty.mccombs.utexas.edu/rui.gao/copula.pdf

Bartl, D. and Drapeau, S. and Tangpi, L. (2018) Computational aspects of robust optimized certainty equivalents and option pricing Mathematical Finance (2019): 1-23. https://doi.org/10.1111/mafi.12203.

Eckstein, S. and Kupper, M. (2019)

Computation of optimal transport and related hedging problems via penalization and neural networks.

Applied Mathematics and Optimization.

Eckstein S., Kupper M. and Pohl M. Robust risk aggregation with neural networks. *arXiv preprint arXiv:1811.00304*, 2018.

.